
Supporting parallel R code in clinical trials: a grid-based approach

Dennis Wegener
Fraunhofer IAIS

Schloss Birlinghoven
53754 St. Augustin, Germany

dennis.wegener@iais.fraunhofer.de

Stelios Sfakianakis
Biomedical Informatics Laboratory

Institute of Computer Science
FORTH, Greece

ssfak@ics.forth.gr

Thierry Sengstag
Swiss Institute of Bioinformatics

Bâtiment Génopode
CH-1015 Lausanne, Switzerland

thierry.sengstag@isb-sib.ch

Stefan Rüping
Fraunhofer IAIS

Schloss Birlinghoven
53754 St. Augustin, Germany

stefan.rueping@iais.fraunhofer.de

Abstract
In this paper, we describe an extension to the ACGT

GridR environment which allows the parallelization of
loops in R scripts in view of their distributed execution
on a computational grid. The ACGT GridR service is
extended by a component that uses a set of pre-
processor-like directives to organize and distribute
calculations. The use of parallelization directives as
special R comments provides users with the potential to
accelerate lengthy calculations with changes to
preexisting code. The GridR service and its extension
are developed as components of the ACGT platform,
one aim of which is to facilitate the data mining of
clinical trials involving large datasets. In ACGT, GridR
scripts are executed in the framework of a specifically
developed workflow environment, which is also briefly
outlined in the present article.

1. Introduction

With the accelerating development of high-
throughput technologies in the domain of biomedical
research and of their use in the context of clinical trials,
hospitals and clinical research centers are facing new
needs in terms of data storage and analysis. For instance
the microarray analysis of a tumor biopsy of a single
patient provides 10’000s to 100’000s of gene-
expression values summarizing up-to millions of
microarray features. New technologies based on
imaging, genome sequencing and proteomics are
pushing even further the needs for data processing in the
clinical research. These new sources of data about
patients and diseases are used in conjunction with
classical clinical information, such as age, gender, status
of various biochemical markers, pathological
classification of tissues, etc.

The analysis of such complex data sets require
appropriate data exploitation approaches, integrating the
know-how acquired in many independent fields into a
powerful environment that physicians can easily and
safely use, for the benefit of the patients. One of the
goals of the European ACGT (Advancing Clinico-
Genomics Trials on Cancer) project is to address this
issue [1].

Several initiatives with a similar goal have been
started worldwide, among which NCI’s caBIG (Cancer
Biomedical Informatics Grid) [2] in the USA and
CancerGrid in the UK [3]. ACGT differs from these
projects in that in addition to the purely technological
aspects of the project, a strong emphasis is put on the
compliance of the IT infrastructure to ethical and legal
guidelines, which should increase its potential for
acceptation by the clinical community.

From the data processing viewpoint, the ACGT
project aims at providing an IT infrastructure supporting
the management of clinical trials (e.g. patient follow-
up), as well as the data-mining involved in the
translational research that often occurs in parallel. It is
in relation to the latter aspect of the project that the need
for a high-performance environment supporting the R
language [4] and the vast collection of already existing
biostatistics algorithms was recognized.

In a previous contribution [5] we have introduced
GridR, showing how R can be used on a grid. The
present paper describes how this approach can be
further developed by introducing grid-based parallelism
in the solution of highly demanding computational
problems.

As our parallel version of the GridR service is meant
to address concrete data mining issues occurring in
clinical trials, we also introduce the ACGT data
architecture in which it is embedded.

2008 International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-3471-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ISPA.2008.29

823

2008 International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-3471-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ISPA.2008.29

823

2008 International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-3471-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ISPA.2008.29

823

2008 International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-3471-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ISPA.2008.29

823

2. ACGT

The ACGT project aims at addressing the needs of
the biomedical community by providing a secured,
integrated data management and data mining
environment in support of large multi-centric clinical
trials. From the technological point of view, ACGT
offers a modular environment in which new data
processing and data mining services can be integrated as
plug-ins as they become available. ACGT also provides
a framework for semantic integration of data sources
(e.g., clinical databases) and data mining tools, through
the use of a specifically developed ontology and of a
semantic mediator.

In the version to be released to the public in early
2009, the various elements of the data mining
environment can be integrated into complex analysis
pipelines through the ACGT workflow editor and
enactor, itself embedded in a user-friendly portal.

In terms of the technology infrastructure the ACGT
platform is based on three state-of-the-art middleware
technologies: The Grid, which takes care of the user
management, the management of Virtual Organizations
(VOs), the security infrastructure, the data management,
and the efficient utilization of the available computing
power, the Service Oriented Architecture and its
infrastructure, which prescribes the needed Web Service
interfaces for the annotation, invocation, and
composition of the ACGT components as services, and
the Semantic Web, which provides the “glue” in various
places such as for the semantic annotation of data and
services and the linking to shared ontologies.

In this context, a set of services have been developed

which can be roughly classified as follows:
• Data access services. These services are

responsible for the retrieval of data shared in the
context of a clinical trial. This category includes
the Data Wrappers which are adapters for existing
clinical and imaging databases exposing database
contents to other ACGT components, Microarray
services that provide access to BASE repositories
[6], and finally Mediator Services that offer
uniform access to distributed and heterogeneous
clinical and biomedical databases.

• Services for the Semantics-aware use of the
platform. In this category, the Ontology Services
provide a conceptualization of the domain, by the
mean of the Master Ontology for Cancer, for
constructing complex queries for the mediator
services. Furthermore Metadata Repositories and
associated services ensure the persistence and
proper management of the description of the
services available to the users.

• Service Enactment, which includes the basic grid
mechanisms used for the submission and execution
of jobs in processing nodes, and the higher-level
Workflow Enactment Services that support the
management and execution of complex biomedical
workflows.

• Data Analysis and Knowledge Discovery Services,
which are a number of data mining and knowledge
discovery tools and services that fulfill the data-
analysis requirements of ACGT, with GridR as
one of the most prominent tools.

ACGT aims at reusing existing open-source tools as

much as possible; R and the associated project
Bioconductor are thus natural candidates for integration
in the ACGT environment. It is in this context that
GridR was developed.

In ACGT GridR plays a dual role: on one hand it can
be used interactively, giving the users access to the
whole ACGT environment, on the other hand it is
deployed as a data-analysis service exposing a Web
Service interface for the execution of scripts
incorporated in scientific workflows. Its design and
internals are further described in the following section.

3. GridR

3.1. Motivation for parallel processing

The motivation for the parallelization of R code is

that a large set of advanced biostatistics tasks are
computationally very intensive but have a structure
which is trivially parallelizable (e.g., Monte Carlo or
Resampling algorithms), i.e. there are elements of
calculations in R scripts that can be run independently
of each other. In order to avoid making workflow
management too complex on the ACGT platform, it was
decided to hide the parallelization from the workflow
environment and to deal with it directly at the level of
the GridR environment. This is also justified by the fact
that developers of R scripts are ultimately best placed to
know which parts of the script can benefit from
parallelization. Hiding parallelism from the workflow
environment also ensures that all GridR tasks are
executed in a consistent environment, namely with the
same scheduler and data management.

3.2. GridR in ACGT

GridR [5] consists of an R package and a web

service which allow using the statistical software R [2]
in a grid environment. In the following, we will focus
on the web service component of GridR. The interface
of the GridR service supports the execution of user-
defined scripts as well as the execution of scripts that

824824824824

have been pre-registered in a repository. In the ACGT
platform, the GridR service is implemented as a GSI-
secured grid service based on the Globus Toolkit 4
libraries [7] and on the Gridge Toolkit [8]. In detail, the
GridR service includes clients to the Gridge data
management system (DMS, a virtual file system for data
organization in grid environments), and to the Gridge
grid resource management system (GRMS, which is
responsible for grid resource management and
scheduling of grid jobs).

The interface to the DMS is based on files; this
implies that all input and output data have to be passed
to and from GridR by physical files. For this purpose,
the GridR service attaches a header to each script which
makes the contents of input files accessible in the R
session on the execution machine as elements of a
predefined R list. The interface for the output is a list of
file or directory names that the user can use to export
data from the session.

3.3. Parallel processing with the GridR service

The developer of a parallel GridR script is offered a

“directive”-like mechanism for the annotation of the
parts of the script that can run in parallel. With the help
of these annotations, the GridR service can split the
script into parallel or non-parallel sections that are or
are not to be run in parallel as grid jobs. Internally, a
preprocessing component of the GridR service parses
the script for extracting the user specified annotated
information needed for the submission of grid jobs
through GRMS. This information includes the
specification of the inputs (including functions if they
are user defined) and outputs of the parallel sections and
of an index variable which can be used to identify
specific iteration in parallelized loops. In addition, the
degree of parallelization (the number of parallel tasks)
and two pointers marking where parallel sections of the
code start and end are also determined during the
preprocessing phase. In order to avoid having a different
code version for standalone and GridR parallel
execution of the script, the directives needed to parse
the R code and make a parallelized version of it are
passed to GridR as R comments.

Currently only a simple parallelization of for-loops is
supported, requiring the exact number of iterations to be
known before execution. This number is used to spawn
a corresponding number of grid jobs, each executing a
single iteration of the loop. This mechanism is
illustrated with the following example, which shows the
generation of 3 parallel jobs that compute a single
iteration of the for-loop each:

#GRIDR-PARALLEL-START; index=i;

degree=3; input=x; skipNextLines=1
for (i in 1:3) {
 result[i] = add(x,i)
}
#GRIDR-PARALLEL-END; output=result;

skipPrevLines=1

Hence, the R script is no longer computed as a whole

by a single grid job but as a specified number of sub-
tasks resulting from the splitting the original code in the
respective number of smaller parallel and non-parallel
sections, to GRMS. The parallel sections contain the
code of the body of the loop. As the results of the
underlying GRMS job executions are stored into the
DMS as files, the individual script sections have to use
files to interface with the previous or subsequent
sections. The parallel GridR service thus attaches a
header and/or a footer to each section for interfacing
with other parts of the script, in a similar way as for the
handling of input and output of the non-parallel version
of the GridR service,. Headers and footers are
responsible for loading and storing data as R objects
from/to the files that are staged in/out by GRMS.

More precisely:
• for non-parallel sections

o Header - loads the full workspace saved by the
previous non-parallel section and the output
object stored by the previous parallel sections

o Footer - saves the full workspace for the
following non-parallel section and the objects
needed as input by the following parallel
sections.

• for parallel sections
o Header - loads the objects stored by the

previous non-parallel section and the index
variable specifying the iteration number, which
allows users to take iteration-specific actions.

o Footer - saves the output objects for the
following non-parallel section.

Technically, the GridR service translates the

parallelization information into a complex GRMS job
description representing the workflow to be executed
and submits it as GRMS job.

For data-transfer performance reasons, all non-
parallel parts of the script are executed on the same
machine, which means that only the subsets of R objects
required to perform the parallel sections (specified as
the “input=” and “output=” fields of the parallelization
directive; cf. code fragment above) have to actually be
transferred to computing nodes.

825825825825

The technique of parallelization described here is
very simple, which allowed a rapid integration of the
method into the ACGT environment. Thus the ACGT
environment readily provides a way to distribute
parallel tasks over the whole grid environment with
only minimal editing of pre-existing code, the edition
being limited to the addition of a few comment-like
parallelization directives.

4. Scenario

A natural application of this mechanism in clinico-
genomics context follows from the fact that many
biomedical quantities follow ill-defined statistical
distributions making the need to use empirical
determination methods for summaries and confidence
intervals a necessity. Resampling techniques play thus a
central role in the mining of biomedical data, though
this usually implies computationally intensive
calculations. Fortunately, given their structure, such
methodologies can easily benefit from the use of
parallelization.

In the scenario retained for the illustration of parallel
execution of R code, GridR is used to identify a
genomic signature associated to the response of breast-
cancer patients to a specific treatment. The signature is
then used as a predictor for patient response to the
treatment. (A gene signature is a group of genes, to
which a numerical summary score is associated, usually
a weighted average of the gene expression of the genes
belonging to the signature.)

This scenario follows the line of the clinical trial on
breast cancer “TOP”, which is currently run in the
context of the ACGT project.

4.1. Simulated data set

The data set used in the present scenario is a
simulation of the actual TOP trial, with 198 “simulated
patients”, which was constructed using only public or
simulated data. Each simulated patient was associated to
an Affymetrix gene-expression microarray (HG-
U133A) from a preexisting breast-cancer dataset
available on the Gene Expression Omnibus [9] (GEO
series GSE7390). Each microarray measures the
expression of 22283 genes (or transcripts). A simulated
pathological response was computed for each simulated
patient based on the gene expression pattern, using a
known group of genes. Many of the known genes
should be retrieved after reconstruction of the signature,
thus providing a validation criterion.

4.2. Actual scenario

The scenario is to construct the signature
discriminating between patients having good and poor
response based on the gene expression, then, using the
signature score to predict patient response. The
assessment of the accuracy of the classifier is made
using a cross-validation loop. Essentially, the workflow
implementing this scenario contains of the following
components:

• Microarray data retrieval from a database
• Normalization of microarray data (GridR script)

Fig. 1: A complex genomics data analysis workflow represented in side the ACGT workflow editor. The
tree explorer on the left of the picture allows the user to select services registered in the metadata
repository to add them to the workflow. See text for the description of the workflow.

826826826826

• Retrieval of patient pathological response from
clinical database.

• Determination of pathological response signature
and assessment of classification performance with
a cross-validation loop (parallel GridR)

Data exchange between these components occurs

through DMS-stored files. Fig. 1 illustrates the
implementation of this workflow as constructed with the
ACGT workflow editor. The first row of blocks
represents input fields, which are related to the
preparation of queries to clinical and microarray
databases. The blocks in the second row of the
workflow are responsible the data access and in
particular for actually enacting the queries (“Mediator”),
while the two blocks in the third row are the GridR
elements, with the one on the right (“datapreparation”)
implementing the data normalization step and the one
on the left (“dataanalysis”) implementing the gene
signature discovery and the associated cross-validation
loop.

The classifier performance assessment uses a 10-fold
cross-validation loop distributed to the compute nodes
by the GridR parallel service. In each of these loops a
signature is constructed using the genes discriminating
best between responsive and non-responsive patients.
Significant genes are identified via a logistic regression
of pathological response (coded as 0 and 1) against gene
expression. Tens of thousands of logistic regressions are
thus required in each iteration.

This scenario is a proof-of-concept for the support
for parallel processing of R code with the GridR service
used in biomedical context. The same scenario in a real
clinical application would require much heavier
calculations, as, e.g., the threshold for gene selection
would be determined iteratively and a bootstrapping
loop would enclose the cross-validation loop to mitigate
sampling effects in the assessment of classifier
performance. This further justifies the need for
supporting parallelism in the context of GridR.

Benchmarking the method described in this paper in
the ACGT environment still remains to be done. We do
not expect a great benefit for the present exercise.
However, the benefit for larger scale, more realistic,
biomedical applications should be significant, despite
the use of a file based approach to data exchange.

5. Related Work

The approach we have followed in the present work
is an example of data parallelism: the tasks submitted
for concurrent execution on the grid are identical but
they apply to different slices of the data. In particular
we are parallelizing loops so that all the iterations are
executed in parallel in different grid jobs. The

parallelization of loops has been used extensively in
various programming languages and toolkits, e.g., in
High Performance Fortran [10], Fortress [11], and in
NESL [12] or Data Parallel Haskell [13] using parallel
arrays and list comprehensions.

The marking of R code sections to be run in parallel
in our work is similar to the approach in OpenMP [14].
A current limitation in our implementation is that the
exact number of parallel jobs has to be known in
advance. Such limitations seem not to exist in the
“parallel-R” (pR) approach [15]. In pR an “on the fly”
parallelization of R code is taking place and the parallel
tasks are executed through the means of MPI in a
cluster of machines. A number of other tools providing
support for concurrent computations exist in R, e.g.,
rpvm [16], rmpi [17] and snow (Simple Network Of
Workstations) [18]. Rpvm and rmpi provide wrappers to
the parallel programming packages parallel virtual
machine (PVM) [19] and message-passing interface
(MPI) [20] which can only be used in homogeneous
environments and require explicit orchestration of
message passing in the parallel execution of R scripts.
The snow package provides a higher level of abstraction
that is independent of the communication technology.

However, in contrast to GridR, all these approaches
lack a seamless integration with grid technology,
especially considering the security requirements which
are essential when dealing with real clinical data.

A more interesting effort is Biocep [21], which is a
general unified solution for integrating and virtualizing
the access to R servers. It offers a rich infrastructure for
interacting with a heterogeneous set of backend R
engines, which can be possibly organized in clusters or
grids. Its distributed computing facilities are accessible
via an API or directly from the R console in a similar
way as to what has been defined within the snow
package. Biocep’s aim is definitely more generic than
ours. The parallel GridR service is more specialized to
the state of the art grid infrastructure with a strong
emphasis on supporting the stringent security
requirements of real world clinical trials. In this context
the design of GridR is more focused and tightly coupled
to a modern, service oriented grid infrastructure where
parallelization is realized by the concurrent execution of
many grid jobs on a minimally preconfigured and
dynamic set of grid nodes. This design is adequate to
support large scale processing and data analysis
scenarios in scientific experiments such as the ones the
ACGT project aims to deliver in a pan-European setup.

In the ACGT Workflow Environment workflows are
enacted by a BPEL [22] compliant workflow engine.
BPEL version 2.0 also supports parallelism to a certain
degree: it features a specific language construct (“flow”)
to support the execution of the contained activities in
parallel, and, similarly, a parallel version of the

827827827827

“ForEach” loop supports parallelism in the context of
iterations. Therefore GridR parallelism could be
achieved at the level of the workflow layer, although
this would require either some custom handling of
parallel GridR scripts or having the user to manually
separate the single script into multiple sections that are
then executed as autonomous activities in the workflow.
The applicability of such mechanisms to the ACGT
platform remains to be investigated further.

6. Future Work and Conclusion

A current limitation of our solution is that the degree
of parallelization has to be known in advance, because
the jobs for parallel processing are not submitted at
runtime of the R script itself. Alternative approaches to
set up parallel GridR jobs are under consideration, for
instance by making use of the GridR client within the
script [23]. The latter allows submitting sub-tasks from
within the running R session, thus avoiding the
constraint of knowing the number of iteration before
execution. However, other practical constraints appear
on the infrastructure side (e.g., firewall configuration),
and the script code has to be modified.

The approach presented here was pursued as it met
the security constraints of the present ACGT
environment (GT4 machines and Condor pools).
Moreover, a request from the clinical user community
was to be also able to test the R code in standalone
fashion on a local machine without modification of the
code, thus allowing easy moves from development
(standalone) to production (parallel) versions of analysis
scripts.

The parallel version of the GridR service presented
in this contribution addresses the practical needs of the
ACGT biomedical community. However, we believe
that, despite its current limitations, it can be helpful to a
broader R audience, as it brings the power and security
features of grid infrastructure to R developers, at an
extremely minimal cost in terms of script adaptation.

7. Acknowledgments
The authors gratefully acknowledge the financial
support of the European Commission for the Project
ACGT, FP6/2004/IST-026996.

8. References
[1] ACGT (EU): http://eu-acgt.org/
[2] Cancer Biomedical Informatics Grid, caBIG (USA):

https://cabig.nci.nih.gov/
[3] CancerGrid (UK): http://www.cancergrid.org/
[4] R Development Core Team (2005), “R: A Language and

Environment for Statistical Computing”, R Foundation
for Statistical Computing, Vienna, Austria

[5] D. Wegener, T. Sengstag, S. Sfakianakis, S. Rüping, A.
Assi, “GridR: An R-based grid-enabled tool for data
analysis in ACGT clinico-genomic trials”. In: Proc. of
the 3rd IEEE International Conference on e-Science and
Grid Computing (eScience 2007), Bangalore, India,
2007, pp. 228-235.

[6] BASE: http://base.thep.lu.se/
[7] I. Foster, “Globus Toolkit Version 4: Software for

Service-Oriented Systems”, IFIP International
Conference on Network and Parallel Computing,
Springer-Verlag LNCS 3779, pp 2-13, 2006

[8] J. Pukacki, M. Kosiedowski, R. Mikołajczak, M.
Adamski, P. Grabowski, M. Jankowski, M. Kupczyk, C.
Mazurek, N. Meyer, J. Nabrzyski, T. Piontek, M.
Russell, M. Stroiński, M. Wolski “Programming Grid
Applications with Gridge”, Computational Methods in
Science and Technology vol. 12, Poznan 2006.

[9] GEO: http://www.ncbi.nlm.nih.gov/projects/geo/
[10] High Performance Fortran Forum. High Performance

Fortran Language Specification, May 1993.
[11] G. Steele, “Parallel Programming and Parallel

Abstractions in Fortress”, Functional and Logic
Programming, 8th International Symposium (FLOPS
2006), Proceedings, LNCS, Vol. 3945(1), 2006

[12] G.E. Blelloch,, Programming parallel algorithms,
Communications of the ACM, Vol. 39(3), pp 85--97,
ACM New York, NY, USA, 1996

[13] M.M.T. Chakravarty, G. Keller, R. Lechtchinsky, W.
Pfannenstiel, “Nepal -- Nested Data-Parallelism in
Haskell”, In R. Sakellariou, J. Keane, J.R. Gurd, and L.
Freeman, editors, Euro-Par 2001: Parallel Processing,
7th International Euro-Par Conference, Springer-Verlag,
LNCS 2150, pp524-534, 2001.

[14] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan,
J. McDonald, Parallel Programming in OpenMP.
Morgan Kaufmann, 2000.

[15] X. Ma, J. Li, N.F. Samatova, “Automatic Paralleli-zation
of Scripting Languages: Toward Transparent Desktop
Parallel Computing”, IEEE International Parallel and
Distributed Processing Symposium, 2007.

[16] rpvm: R interface to PVM: http://cran.r-
project.org/src/contrib/Descriptions/rpvm.html

[17] H. Yu. Rmpi package for R:
http://www.stats.uwo.ca/faculty/yu/Rmpi/

[18] A. Rossini, L. Tierney, and N. Li. “Simple parallel
statistical computing”. UW Biostatistics working paper
series, 2003

[19] PVM: http://www.csm.ornl.gov/pvm/pvm_home.html
[20] MPI Forum: http://www.mpi-forum.org
[21] K. Chine, “Biocep: a federative collaborative user-

centric and cloud-enabled computational open platform
for e-Research”, Cambridge, UK , 2007.

[22] A. Alves et al., “Web Services Business Process
Execution Language Version 2.0”, OASIS Standard 11
April 2007, available from http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[23] D. Wegener, D. Hecker, C. Körner, M. May, M. Mock,
“Parallelization of R-programs with GridR in a GPS-
trajectory mining application“, Proc. of the 1st ECML/
PKDD International Workshop on Ubiquitous Know-
ledge Discovery (UKD08), Antwerp, Belgium, 2008

828828828828

