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Abstract 
In this paper, we describe an extension to the ACGT 

GridR environment which allows the parallelization of 
loops in R scripts in view of their distributed execution 
on a computational grid. The ACGT GridR service is 
extended by a component that uses a set of pre-
processor-like directives to organize and distribute 
calculations. The use of parallelization directives as 
special R comments provides users with the potential to 
accelerate lengthy calculations with changes to 
preexisting code. The GridR service and its extension 
are developed as components of the ACGT platform, 
one aim of which is to facilitate the data mining of 
clinical trials involving large datasets. In ACGT, GridR 
scripts are executed in the framework of a specifically 
developed workflow environment, which is also briefly 
outlined in the present article. 
 
1. Introduction 
 

With the accelerating development of high-
throughput technologies in the domain of biomedical 
research and of their use in the context of clinical trials, 
hospitals and clinical research centers are facing new 
needs in terms of data storage and analysis. For instance 
the microarray analysis of a tumor biopsy of a single 
patient provides 10’000s to 100’000s of gene-
expression values summarizing up-to millions of 
microarray features. New technologies based on 
imaging, genome sequencing and proteomics are 
pushing even further the needs for data processing in the 
clinical research. These new sources of data about 
patients and diseases are used in conjunction with 
classical clinical information, such as age, gender, status 
of various biochemical markers, pathological 
classification of tissues, etc. 

The analysis of such complex data sets require 
appropriate data exploitation approaches, integrating the 
know-how acquired in many independent fields into a 
powerful environment that physicians can easily and 
safely use, for the benefit of the patients. One of the 
goals of the European ACGT (Advancing Clinico-
Genomics Trials on Cancer) project is to address this 
issue [1]. 

Several initiatives with a similar goal have been 
started worldwide, among which NCI’s caBIG (Cancer 
Biomedical Informatics Grid) [2] in the USA and 
CancerGrid in the UK [3]. ACGT differs from these 
projects in that in addition to the purely technological 
aspects of the project, a strong emphasis is put on the 
compliance of the IT infrastructure to ethical and legal 
guidelines, which should increase its potential for 
acceptation by the clinical community. 

From the data processing viewpoint, the ACGT 
project aims at providing an IT infrastructure supporting 
the management of clinical trials (e.g. patient follow-
up), as well as the data-mining involved in the 
translational research that often occurs in parallel. It is 
in relation to the latter aspect of the project that the need 
for a high-performance environment supporting the R 
language [4] and the vast collection of already existing 
biostatistics algorithms was recognized. 

In a previous contribution [5] we have introduced 
GridR, showing how R can be used on a grid. The 
present paper describes how this approach can be 
further developed by introducing grid-based parallelism 
in the solution of highly demanding computational 
problems. 

As our parallel version of the GridR service is meant 
to address concrete data mining issues occurring in 
clinical trials, we also introduce the ACGT data 
architecture in which it is embedded. 
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2. ACGT  
 

The ACGT project aims at addressing the needs of 
the biomedical community by providing a secured, 
integrated data management and data mining 
environment in support of large multi-centric clinical 
trials. From the technological point of view, ACGT 
offers a modular environment in which new data 
processing and data mining services can be integrated as 
plug-ins as they become available. ACGT also provides 
a framework for semantic integration of data sources 
(e.g., clinical databases) and data mining tools, through 
the use of a specifically developed ontology and of a 
semantic mediator. 

In the version to be released to the public in early 
2009, the various elements of the data mining 
environment can be integrated into complex analysis 
pipelines through the ACGT workflow editor and 
enactor, itself embedded in a user-friendly portal. 

In terms of the technology infrastructure the ACGT 
platform is based on three state-of-the-art middleware 
technologies: The Grid, which takes care of the user 
management, the management of Virtual Organizations 
(VOs), the security infrastructure, the data management, 
and the efficient utilization of the available computing 
power, the Service Oriented Architecture and its 
infrastructure, which prescribes the needed Web Service 
interfaces for the annotation, invocation, and 
composition of the ACGT components as services, and 
the Semantic Web, which provides the “glue” in various 
places such as for the semantic annotation of data and 
services and the linking to shared ontologies.  

 
In this context, a set of services have been developed 

which can be roughly classified as follows:  
• Data access services. These services are 

responsible for the retrieval of data shared in the 
context of a clinical trial. This category includes 
the Data Wrappers which are adapters for existing 
clinical and imaging databases exposing database 
contents to other ACGT components, Microarray 
services that provide access to BASE repositories 
[6], and finally Mediator Services that offer 
uniform access to distributed and heterogeneous 
clinical and biomedical databases. 

• Services for the Semantics-aware use of the 
platform. In this category, the Ontology Services 
provide a conceptualization of the domain, by the 
mean of the Master Ontology for Cancer, for 
constructing complex queries for the mediator 
services. Furthermore Metadata Repositories and 
associated services ensure the persistence and 
proper management of the description of the 
services available to the users. 

• Service Enactment, which includes the basic grid 
mechanisms used for the submission and execution 
of jobs in processing nodes, and the higher-level 
Workflow Enactment Services that support the 
management and execution of complex biomedical 
workflows. 

• Data Analysis and Knowledge Discovery Services, 
which are a number of data mining and knowledge 
discovery tools and services that fulfill the data-
analysis requirements of ACGT, with GridR as 
one of the most prominent tools. 

 
ACGT aims at reusing existing open-source tools as 

much as possible; R and the associated project 
Bioconductor are thus natural candidates for integration 
in the ACGT environment. It is in this context that 
GridR was developed. 

In ACGT GridR plays a dual role: on one hand it can 
be used interactively, giving the users access to the 
whole ACGT environment, on the other hand it is 
deployed as a data-analysis service exposing a Web 
Service interface for the execution of scripts 
incorporated in scientific workflows. Its design and 
internals are further described in the following section.   
 
3. GridR 
 
3.1. Motivation for parallel processing 

 
The motivation for the parallelization of R code is 

that a large set of advanced biostatistics tasks are 
computationally very intensive but have a structure 
which is trivially parallelizable (e.g., Monte Carlo or 
Resampling algorithms), i.e. there are elements of 
calculations in R scripts that can be run independently 
of each other. In order to avoid making workflow 
management too complex on the ACGT platform, it was 
decided to hide the parallelization from the workflow 
environment and to deal with it directly at the level of 
the GridR environment. This is also justified by the fact 
that developers of R scripts are ultimately best placed to 
know which parts of the script can benefit from 
parallelization. Hiding parallelism from the workflow 
environment also ensures that all GridR tasks are 
executed in a consistent environment, namely with the 
same scheduler and data management. 
 
3.2. GridR in ACGT 

 
GridR [5] consists of an R package and a web 

service which allow using the statistical software R [2] 
in a grid environment. In the following, we will focus 
on the web service component of GridR. The interface 
of the GridR service supports the execution of user-
defined scripts as well as the execution of scripts that 
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have been pre-registered in a repository. In the ACGT 
platform, the GridR service is implemented as a GSI-
secured grid service based on the Globus Toolkit 4 
libraries [7] and on the Gridge Toolkit [8]. In detail, the 
GridR service includes clients to the Gridge data 
management system (DMS, a virtual file system for data 
organization in grid environments), and to the Gridge 
grid resource management system (GRMS, which is 
responsible for grid resource management and 
scheduling of grid jobs). 

The interface to the DMS is based on files; this 
implies that all input and output data have to be passed 
to and from GridR by physical files. For this purpose, 
the GridR service attaches a header to each script which 
makes the contents of input files accessible in the R 
session on the execution machine as elements of a 
predefined R list. The interface for the output is a list of 
file or directory names that the user can use to export 
data from the session. 
 
3.3. Parallel processing with the GridR service 

 
The developer of a parallel GridR script is offered a 

“directive”-like mechanism for the annotation of the 
parts of the script that can run in parallel. With the help 
of these annotations, the GridR service can split the 
script into parallel or non-parallel sections that are or 
are not to be run in parallel as grid jobs. Internally, a 
preprocessing component of the GridR service parses 
the script for extracting the user specified annotated 
information needed for the submission of grid jobs 
through GRMS. This information includes the 
specification of the inputs (including functions if they 
are user defined) and outputs of the parallel sections and 
of an index variable which can be used to identify 
specific iteration in parallelized loops. In addition, the 
degree of parallelization (the number of parallel tasks) 
and two pointers marking where parallel sections of the 
code start and end are also determined during the 
preprocessing phase. In order to avoid having a different 
code version for standalone and GridR parallel 
execution of the script, the directives needed to parse 
the R code and make a parallelized version of it are 
passed to GridR as R comments. 

Currently only a simple parallelization of for-loops is 
supported, requiring the exact number of iterations to be 
known before execution. This number is used to spawn 
a corresponding number of grid jobs, each executing a 
single iteration of the loop. This mechanism is 
illustrated with the following example, which shows the 
generation of 3 parallel jobs that compute a single 
iteration of the for-loop each: 
 

 
#GRIDR-PARALLEL-START; index=i; 

degree=3; input=x; skipNextLines=1 
for (i in 1:3) {  
 result[i] = add(x,i)  
}  
#GRIDR-PARALLEL-END; output=result; 

skipPrevLines=1 
 
Hence, the R script is no longer computed as a whole 

by a single grid job but as a specified number of sub-
tasks resulting from the splitting the original code in the 
respective number of smaller parallel and non-parallel 
sections, to GRMS. The parallel sections contain the 
code of the body of the loop. As the results of the 
underlying GRMS job executions are stored into the 
DMS as files, the individual script sections have to use 
files to interface with the previous or subsequent 
sections. The parallel GridR service thus attaches a 
header and/or a footer to each section for interfacing 
with other parts of the script, in a similar way as for the 
handling of input and output of the non-parallel version 
of the GridR service,. Headers and footers are 
responsible for loading and storing data as R objects 
from/to the files that are staged in/out by GRMS. 

More precisely: 
• for non-parallel sections 

o Header - loads the full workspace saved by the 
previous non-parallel section and the output 
object stored by the previous parallel sections  

o Footer - saves the full workspace for the 
following non-parallel section and the objects 
needed as input by the following parallel 
sections. 

• for parallel sections 
o Header - loads the objects stored by the 

previous non-parallel section and the index 
variable specifying the iteration number, which 
allows users to take iteration-specific actions. 

o Footer - saves the output objects for the 
following non-parallel section. 

 
Technically, the GridR service translates the 

parallelization information into a complex GRMS job 
description representing the workflow to be executed 
and submits it as GRMS job.  

For data-transfer performance reasons, all non-
parallel parts of the script are executed on the same 
machine, which means that only the subsets of R objects 
required to perform the parallel sections (specified as 
the “input=” and “output=” fields of the parallelization 
directive; cf. code fragment above) have to actually be 
transferred to computing nodes. 
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The technique of parallelization described here is 
very simple, which allowed a rapid integration of the 
method into the ACGT environment. Thus the ACGT 
environment readily provides a way to distribute 
parallel tasks over the whole grid environment with 
only minimal editing of pre-existing code, the edition 
being limited to the addition of a few comment-like 
parallelization directives.  
 
4. Scenario 
 

A natural application of this mechanism in clinico-
genomics context follows from the fact that many 
biomedical quantities follow ill-defined statistical 
distributions making the need to use empirical 
determination methods for summaries and confidence 
intervals a necessity. Resampling techniques play thus a 
central role in the mining of biomedical data, though 
this usually implies computationally intensive 
calculations. Fortunately, given their structure, such 
methodologies can easily benefit from the use of 
parallelization. 

In the scenario retained for the illustration of parallel 
execution of R code, GridR is used to identify a 
genomic signature associated to the response of breast-
cancer patients to a specific treatment. The signature is 
then used as a predictor for patient response to the 
treatment. (A gene signature is a group of genes, to 
which a numerical summary score is associated, usually 
a weighted average of the gene expression of the genes 
belonging to the signature.) 

This scenario follows the line of the clinical trial on 
breast cancer “TOP”, which is currently run in the 
context of the ACGT project. 
 
4.1. Simulated data set 

The data set used in the present scenario is a 
simulation of the actual TOP trial, with 198 “simulated 
patients”, which was constructed using only public or 
simulated data. Each simulated patient was associated to 
an Affymetrix gene-expression microarray (HG-
U133A) from a preexisting breast-cancer dataset 
available on the Gene Expression Omnibus [9] (GEO 
series GSE7390). Each microarray measures the 
expression of 22283 genes (or transcripts). A simulated 
pathological response was computed for each simulated 
patient based on the gene expression pattern, using a 
known group of genes. Many of the known genes 
should be retrieved after reconstruction of the signature, 
thus providing a validation criterion. 
 
4.2. Actual scenario 

The scenario is to construct the signature 
discriminating between patients having good and poor 
response based on the gene expression, then, using the 
signature score to predict patient response. The 
assessment of the accuracy of the classifier is made 
using a cross-validation loop. Essentially, the workflow 
implementing this scenario contains of the following 
components: 

• Microarray data retrieval from a database 
• Normalization of microarray data (GridR script) 

Fig. 1: A complex genomics data analysis workflow represented in side the ACGT workflow editor. The 
tree explorer on the left of the picture allows the user to select services registered in the metadata 
repository to add them to the workflow. See text for the description of the workflow. 
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• Retrieval of patient pathological response from 
clinical database. 

• Determination of pathological response signature 
and assessment of classification performance with 
a cross-validation loop (parallel GridR) 

 
Data exchange between these components occurs 

through DMS-stored files. Fig. 1 illustrates the 
implementation of this workflow as constructed with the 
ACGT workflow editor. The first row of blocks 
represents input fields, which are related to the 
preparation of queries to clinical and microarray 
databases. The blocks in the second row of the 
workflow are responsible the data access and in 
particular for actually enacting the queries (“Mediator”), 
while the two blocks in the third row are the GridR 
elements, with the one on the right (“datapreparation”) 
implementing the data normalization step and the one 
on the left (“dataanalysis”) implementing the gene 
signature discovery and the associated cross-validation 
loop. 

The classifier performance assessment uses a 10-fold 
cross-validation loop distributed to the compute nodes 
by the GridR parallel service. In each of these loops a 
signature is constructed using the genes discriminating 
best between responsive and non-responsive patients. 
Significant genes are identified via a logistic regression 
of pathological response (coded as 0 and 1) against gene 
expression. Tens of thousands of logistic regressions are 
thus required in each iteration. 

This scenario is a proof-of-concept for the support 
for parallel processing of R code with the GridR service 
used in biomedical context. The same scenario in a real 
clinical application would require much heavier 
calculations, as, e.g., the threshold for gene selection 
would be determined iteratively and a bootstrapping 
loop would enclose the cross-validation loop to mitigate 
sampling effects in the assessment of classifier 
performance. This further justifies the need for 
supporting parallelism in the context of GridR. 

Benchmarking the method described in this paper in 
the ACGT environment still remains to be done. We do 
not expect a great benefit for the present exercise. 
However, the benefit for larger scale, more realistic, 
biomedical applications should be significant, despite 
the use of a file based approach to data exchange. 
 
5. Related Work 
 

The approach we have followed in the present work 
is an example of data parallelism: the tasks submitted 
for concurrent execution on the grid are identical but 
they apply to different slices of the data. In particular 
we are parallelizing loops so that all the iterations are 
executed in parallel in different grid jobs. The 

parallelization of loops has been used extensively in 
various programming languages and toolkits, e.g., in 
High Performance Fortran [10], Fortress [11], and in 
NESL [12] or Data Parallel Haskell [13] using parallel 
arrays and list comprehensions.  

The marking of R code sections to be run in parallel 
in our work is similar to the approach in OpenMP [14]. 
A current limitation in our implementation is that the 
exact number of parallel jobs has to be known in 
advance. Such limitations seem not to exist in the 
“parallel-R” (pR) approach [15]. In pR an “on the fly” 
parallelization of R code is taking place and the parallel 
tasks are executed through the means of MPI in a 
cluster of machines. A number of other tools providing 
support for concurrent computations exist in R, e.g., 
rpvm [16], rmpi [17] and snow (Simple Network Of 
Workstations) [18]. Rpvm and rmpi provide wrappers to 
the parallel programming packages parallel virtual 
machine (PVM) [19] and message-passing interface 
(MPI) [20] which can only be used in homogeneous 
environments and require explicit orchestration of 
message passing in the parallel execution of R scripts. 
The snow package provides a higher level of abstraction 
that is independent of the communication technology.  

However, in contrast to GridR, all these approaches 
lack a seamless integration with grid technology, 
especially considering the security requirements which 
are essential when dealing with real clinical data. 

A more interesting effort is Biocep [21], which is a 
general unified solution for integrating and virtualizing 
the access to R servers. It offers a rich infrastructure for 
interacting with a heterogeneous set of backend R 
engines, which can be possibly organized in clusters or 
grids. Its distributed computing facilities are accessible 
via an API or directly from the R console in a similar 
way as to what has been defined within the snow 
package. Biocep’s aim is definitely more generic than 
ours. The parallel GridR service is more specialized to 
the state of the art grid infrastructure with a strong 
emphasis on supporting the stringent security 
requirements of real world clinical trials. In this context 
the design of GridR is more focused and tightly coupled 
to a modern, service oriented grid infrastructure where 
parallelization is realized by the concurrent execution of 
many grid jobs on a minimally preconfigured and 
dynamic set of grid nodes. This design is adequate to 
support large scale processing and data analysis 
scenarios in scientific experiments such as the ones the 
ACGT project aims to deliver in a pan-European setup. 

In the ACGT Workflow Environment workflows are 
enacted by a BPEL [22] compliant workflow engine. 
BPEL version 2.0 also supports parallelism to a certain 
degree: it features a specific language construct (“flow”) 
to support the execution of the contained activities in 
parallel, and, similarly, a parallel version of the 
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“ForEach” loop supports parallelism in the context of 
iterations. Therefore GridR parallelism could be 
achieved at the level of the workflow layer, although 
this would require either some custom handling of 
parallel GridR scripts or having the user to manually 
separate the single script into multiple sections that are 
then executed as autonomous activities in the workflow. 
The applicability of such mechanisms to the ACGT 
platform remains to be investigated further. 
 
6. Future Work and Conclusion 
 

A current limitation of our solution is that the degree 
of parallelization has to be known in advance, because 
the jobs for parallel processing are not submitted at 
runtime of the R script itself. Alternative approaches to 
set up parallel GridR jobs are under consideration, for 
instance by making use of the GridR client within the 
script [23]. The latter allows submitting sub-tasks from 
within the running R session, thus avoiding the 
constraint of knowing the number of iteration before 
execution. However, other practical constraints appear 
on the infrastructure side (e.g., firewall configuration), 
and the script code has to be modified.  

The approach presented here was pursued as it met 
the security constraints of the present ACGT 
environment (GT4 machines and Condor pools). 
Moreover, a request from the clinical user community 
was to be also able to test the R code in standalone 
fashion on a local machine without modification of the 
code, thus allowing easy moves from development 
(standalone) to production (parallel) versions of analysis 
scripts. 

The parallel version of the GridR service presented 
in this contribution addresses the practical needs of the 
ACGT biomedical community. However, we believe 
that, despite its current limitations, it can be helpful to a 
broader R audience, as it brings the power and security 
features of grid infrastructure to R developers, at an 
extremely minimal cost in terms of script adaptation.  
 
7. Acknowledgments 
The authors gratefully acknowledge the financial 
support of the European Commission for the Project 
ACGT, FP6/2004/IST-026996. 
 
8. References 
[1] ACGT (EU): http://eu-acgt.org/ 
[2] Cancer Biomedical Informatics Grid, caBIG (USA): 

https://cabig.nci.nih.gov/ 
[3] CancerGrid (UK): http://www.cancergrid.org/ 
[4] R Development Core Team (2005), “R: A Language and 

Environment for Statistical Computing”, R Foundation 
for Statistical Computing, Vienna, Austria  

[5] D. Wegener, T. Sengstag, S. Sfakianakis, S. Rüping, A. 
Assi, “GridR: An R-based grid-enabled tool for data 
analysis in ACGT clinico-genomic trials”. In: Proc. of 
the 3rd IEEE International Conference on e-Science and 
Grid Computing (eScience 2007), Bangalore, India, 
2007, pp. 228-235. 

[6] BASE: http://base.thep.lu.se/ 
[7] I. Foster, “Globus Toolkit Version 4: Software for 

Service-Oriented Systems”, IFIP International 
Conference on Network and Parallel Computing, 
Springer-Verlag LNCS 3779, pp 2-13, 2006 

[8] J. Pukacki, M. Kosiedowski, R. Mikołajczak, M. 
Adamski, P. Grabowski, M. Jankowski, M. Kupczyk, C. 
Mazurek, N. Meyer, J. Nabrzyski, T. Piontek, M. 
Russell, M. Stroiński, M. Wolski “Programming Grid 
Applications with Gridge”, Computational Methods in 
Science and Technology vol. 12, Poznan 2006. 

[9] GEO: http://www.ncbi.nlm.nih.gov/projects/geo/ 
[10] High Performance Fortran Forum. High Performance 

Fortran Language Specification, May 1993. 
[11] G. Steele, “Parallel Programming and Parallel 

Abstractions in Fortress”, Functional and Logic 
Programming, 8th International Symposium (FLOPS 
2006), Proceedings, LNCS,  Vol. 3945(1), 2006 

[12] G.E. Blelloch,, Programming parallel algorithms, 
Communications of the ACM,  Vol. 39(3), pp 85--97, 
ACM New York, NY, USA, 1996 

[13] M.M.T. Chakravarty, G. Keller, R. Lechtchinsky, W.  
Pfannenstiel, “Nepal -- Nested Data-Parallelism in 
Haskell”, In R. Sakellariou, J. Keane, J.R. Gurd, and L. 
Freeman, editors, Euro-Par 2001: Parallel Processing, 
7th International Euro-Par Conference, Springer-Verlag, 
LNCS 2150, pp524-534, 2001. 

[14] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, 
J. McDonald, Parallel Programming in OpenMP. 
Morgan Kaufmann, 2000. 

[15] X. Ma, J. Li, N.F. Samatova, “Automatic Paralleli-zation 
of Scripting Languages: Toward Transparent Desktop 
Parallel Computing”, IEEE International Parallel and 
Distributed Processing Symposium, 2007.  

[16] rpvm: R interface to PVM: http://cran.r-
project.org/src/contrib/Descriptions/rpvm.html 

[17] H. Yu. Rmpi package for R: 
http://www.stats.uwo.ca/faculty/yu/Rmpi/ 

[18] A. Rossini, L. Tierney, and N. Li. “Simple parallel 
statistical computing”. UW Biostatistics working paper 
series, 2003 

[19] PVM: http://www.csm.ornl.gov/pvm/pvm_home.html 
[20] MPI Forum: http://www.mpi-forum.org 
[21] K. Chine, “Biocep: a federative collaborative user-

centric and cloud-enabled computational open platform 
for e-Research”, Cambridge, UK , 2007. 

[22] A. Alves et al., “Web Services Business Process 
Execution Language Version 2.0”, OASIS Standard 11 
April 2007, available from http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html  

[23] D. Wegener, D. Hecker, C. Körner, M. May, M. Mock, 
“Parallelization of R-programs with GridR in a GPS-
trajectory mining application“, Proc. of the 1st ECML/ 
PKDD International Workshop on Ubiquitous Know-
ledge Discovery (UKD08), Antwerp, Belgium, 2008 

828828828828


