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Abstract. Grid technologies have proven to be very successfihe area of
eScience, and healthcare in particular, becausg alew to easily combine
proven solutions for data querying, integratiorg analysis into a secure, scalable
framework. In order to integrate the services thmtlement these solutions into a
given Grid architecture, some metadata is requfdgxample information about
the low-level access to these services, securitiprrimation, and some
documentation for the user. In this paper, we itigate how relevant metadata
can be extracted from a semi-structured textualh@ntation of the algorithm
that is underlying the service, by the use of tekiing methods. In particular, we
investigate the semi-automatic conversion of furndi of the statistical
environment R into Grid services as implementedthy GridR tool by the
generation of appropriate metadata.
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1. Introduction

Grid technologies have proven to be very successfthe area of eScience, and
healthcare in particular, because they allow tdyeasmbine proven solutions for data
querying, integration, and analysis into a secsmlable framework. There are a
number of projects that aim at developing Grid-dasdrastructure for post-genomic
cancer clinical trials, the most advanced of whiate NCI's caBIG (Cancer
Biomedical Informatics Grid) in the USA and Canced3in the UK and the ACGT
project, in the context of which this work was dieped

In order to integrate the services that implembasée solutions into a given Grid
architecture, some metadata is required, for exarimgbrmation about the low-level
access to these services, security informationsante documentation for the user.

In this paper, we investigate how relevant metadatabe extracted from a semi-
structured textual documentation of the algoritiat is underlying the service, by the
use of text mining methods. In particular, we inigagte the semi-automatic conversion
of functions of the statistical environment R [h}d Grid services as implemented by
the GridR tool [2] by the generation of appropriatetadata. While the problem of
metadata extraction has already been addressée firetd of ontology population [3]
or in the area of digital libraries, for example fwllections of text documents [4] or
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images [5], the field of metadata for grid servietif provides many challenges. One
reason is that a grid service is a very complerabjwhich is usually not described in
a uniform and standardized way. In addition, iniiglg new services often requires
manual integration work by the administrator anywsych that the additional setup of
metadata is not much additional work. In contrts, approach proposed in the paper
does rely on a more standardized form of documientat R help text — and a generic
service for the setup of specific single servicesictv very much minimizes the
administrator’s work.

The remainder of the paper is structured as folidies next section introduces the
GridR service, for which we want to extract metagdatnd the ACGT system in the
context of which GridR was developed. Section 3cdees our approach to the
extraction of metadata, which is empirically evahah in Section 4. Section 5
concludes.

2.  Gridr

GridR is a generic service for the gridified exémutof scripts that are written in the
statistical language R. GridR was developed in a¢batext of the project ACGT.
Before we introduce GridR in detail, let us shodbiscribe the ACGT system and its
approach to metadata.

2.1.The ACGT System

In recent years, the rapid development of hightighput genomics and post-
genomics technologies has provided clinicians fightcancer with new discovery
paths and has opened the possibility to develojemtagpecific treatment strategies.
However, the amount of information now available édach patient (e.g. in microarray
context from 10'000s to 100’000s of variables sumniag up-to millions of array
features) has rendered difficult the isolationha tlinically relevant information from
all available data. Considering the current sizelwiical trials (hundreds of patients),
there is a clear need, both from the viewpointhef fundamental research and from
that of the treatment of individual patients, fodata analysis environment that allows
the exploitation of this enormous pool of data.sTis the aim of the Advancing
Clinico-Genomics Trials on Cancer (ACGT) projectC@T aims at developing an
open-source IT infrastructure to provide the bioimaldcommunity with the tools
needed to integrate complex clinical informationl amake a concrete step towards the
tailorization of treatment to the patient.

On the data side, the ACGT environment is desidaduk versatile and will allow
the integration of high-throughput databases widtadboth from existing (e.g.
microarrays, imaging) and future technologies (bigh-throughput proteomics). The
design of the platform considers the integratiopr¥ate (i.e. trial-specific) databases
with public ones, thus making publicly availabletad®ts potentially immediately
available for hypothesis validation and meta-aregys

On the methodology side, the ACGT platform is geet to be modular, allowing
to integrate additional data analysis tools (sofewéoth open source and commercial,
web services) as plugins, as they become avail@lolesidering that the amount of data
generated is expected to rise to several gigalftelmta per patient in a close future
access to high-performance computing resources beillunavoidable. Hence, Grid



computing [6] appears as a promising technologyce&s and use of Grid-based
resources is thus an integral part of the desighefnfrastructure.

An early decision in the ACGT project was that shatistical package R, which in
conjunction with the Bioconductor project [7] hasiakly become a quasi-standard in
the field of bioinformatics, should become a coetadanalysis tool. This led to the
implementation of GridR, which is described in tiext section.

The ACGT approach to metadata heavily relies onittrduction of a central
metadata repository [8], in which all informatiolboaut services, workflows, data types,
and virtual organizations is stored. Both the AC®Qdrkflow environment and several
metadata-aware services make heavy use of the atetapository.

2.2.GridR

GridR is one of the important analysis tools toused in the ACGT environment.
GridR is based on the open-source statistical ggecka The R environment provides a
broad range of state-of-the-art statistical, greghitechniques and advanced data
mining methods (including comprehensive packages lfoear and non-linear
modeling, cluster analysis, prediction, hypothésis, resampling, survival analysis,
time-series analysis), it is easy extensible amdet out as the de facto standard for
statistical research and many applied statisticgept, especially in the biomedical
field. The associated project Bioconductor addesse needs of the biomedical and
biostatisticians community for genomic data-analymiented R packages. Numerous
methods available as R/Bioconductor packages amdiadered experimental a few
years ago have been stabilized and became accetptadhrd in the analysis of high-
throughput genomic data.

In the ACGT analysis environment, R is used ases inderface and as an analysis
tool. R as user interface is supposed to servea@ggmming language interface to the
ACGT environment. Used as analysis tool, the go&b iachieve a seamless integration
of the functionality of R and the ACGT semanticadaérvices in a grid environment,
hiding complexity of the grid environment. In orderachieve this level of integration,
appropriate metadata is necessary.

In a typical usage scenario, the user wants touteean existing R script. In order
to do that, he has to follow some very easy prognarg guidelines (basically reading
script input from a fixed variablg and writing the output of the script into another
fixed variabley). He then uploads the script to the metadata repysin the process
of which he has to define the input and output $yfdée script then becomes available
as a standard service, which can be executed wdhlow environment.

In the execution of the script, the generic GridiRviee is called, which loads the
actual script from the metadata repository, emhke®R code into appropriate code to
download the input and upload the results direfriiyn within R, and executes the
script using R in batch mode.

However, with the availability of high-quality futiens in existing R librari€’s it
is often already possible to achieve the neededtifumality with a single existing R
function. Hence, it is completely meaningful to raavailable services for each of the
single functions in a library. In addition, quesisoof automatic checking and re-
usability of algorithms can be addressed much smgl the level of workflows than at
the level of scripts.

5 see the Comprehensive R Archive Netwlottip://cran.r-project.org



3.  Automatic Extraction of Metadata

In Grid systems, metadata is used to describeviceen order to allow automatically
integrating it into the system, and allowing thenssto understand the operation of the
service. In general, metadata can be divided hrieetcategories

Technical metadata contains all information that is necessary to asdbe
service, such as its name, its URL, and its sigeafie. a description of its
input and output types. WSDL [9] is a prominenample of a language to
express this type of metadata.

Administrative metadata holds information about the owner of the service
and the terms under which one is allowed to opdhegeservice. For example,
the Dublin Core Metadata Element Set [10] — whishfrequently used to
describe digital media, but can also be appliestetwices - holds the elements
Creator, Publisher, Contributor, and Rights to cover the administrative
aspects. In Grid systems, security informationhsag necessary access rights
and where to request access, is important adnatiistrinformation.

Descriptive metadata finally contains a description of the semanticsthod
service. It is not necessary for the operatiorhefgervices, but for the user to
find an appropriate service for their task. Senwantian be described by a
simple documentation text, but often ontologiestadxonomies are used to
allow a standardized, machine-readable descripfioprominent example in
the field of biological data can be found in th@BIOBY initiative [11]. The
goal of BioMOBY is to create an ontology of bioinfeatics data types, define
a data syntax for this ontology, create an open &Rr this ontology and
register services in an ontology-aware registrytlierMOBY-S system.

In the case of the GridR service, which is a geneervice which can be
instantiated by deploying different R scripts, adistrative metadata is usually
constant for all scripts. Likewise, parts of thehmical metadata can be shared, as it is
essentially the same service that implements tleewion of all R scripts. Metadata
that is dependent on the R script consists ofrtpatiand output types and the semantic
metadata. Hence, in the remainder of this papewileonly address the questions of
how to extract the input and output types of anuRcfion, and how to order the
function into a taxonomy of services.

3.1.Metadata Extraction

In our approach, we envision the following use cassystem administrator is tasked
with integrating a new R library into the Grid syst After installing the actual
software, the critical step is to set up appropriaetadata for each function. Luckily, R
packages already come with a semi-structured teglo@umentation of all functions,
an example of which can be seen in Figure 1. Treumentation is structured into
different sections such @3escription, Usage, Arguments, Details, Value, References,
See Also, andExample. As one can see, the sectiarguments is again structured into a
list of names and descriptions of the single pataraeThe sectioWalue describes the
output in a similar, slightly less structured fotma



diana {chuster}
DIvisive ANA
Description

Computes a divisive hierarchical clustering of the dataset rebuwning an object of class diana.

Usage
diana (x, diss = inherits(x, "dist"}, metric = "euclidean", atand = FALSE,
keep.diss = n < 100, keep.data = !dis=s)

Arguments

= data matrix or data frame, or dissimilarity matrix or object, depending on the vq
In case of a matrix or data frame, each row corresponds to an observation, an
In case of a dissimilarity matrix, x is typically the output of daisyv or distc. Als
the same way as the output of the above-mentioned functions. Missing values

diss logical flag: if TRUE (default for dist or dissimilaricy objects), then x will
by variables.

metric character string specifving the metric to be used for calculating dissimilarities b

The currently available options are "euclidean” and "manhattan”. Huclidean distd
If = 15 alreadw a dissimilaritv matrix then this aroment will be ienored

Figure 1: R help text for function " diana"

As the metadata is crucial for the operation of@ni& system, the extraction process is
required to achieve perfect accuracy. Wrong metadatthe input and output types
would prohibit the function to be executed propeAywrong entry of the function in
the taxonomy of services would stop the user frisnaVering it in the first place.
We will now present how to make use of text minjtg] methods to solve this task.
However, in text classification tasks it is diffitio achieve perfect accuracy, in
particular on data sets so small as in the caseethdata descriptions. Hence, we aim
for a semi-automatic procedure that supports thmimidtrator as much as possible in
the setup of the metadata, but relies on the adimadr for the final check. This
procedure simplifies the metadata extraction progesvo ways:
® The identification of input and output types redside a library-specific
mapping of R data types to Grid data types. Gelyef@rid data types tend to
be more semantically enhanced than R data typesewlsually a single data
type @data.frame) is used for all data sets. However, in the cantéxa single
library, it is reasonably safe to assume that théaR type does not map to
multiple Grid data types. As the documentationhef function arguments and
values is already highly structured in R help texite identification of the
single arguments themselves can be achieved byesiegular expressions.
® An iterative procedure allows to significantly ireise the available data for
the extraction process: In a standard approaclty dhitfunctions of other
libraries, that have already been integrated ihi taxonomy of services,
would be used as the basis for learning the extragbrocess. With an
iterative procedure, it is also possible to userimiation of already processed
functions of the same library for the following fitions. We will later see that



there may be problems in transferring text miningdeis from one library to

the other, such that data of the same library, &vérs few, is very valuable.
In summary, our metadata extraction algorithm cadéscribed as follows: first, a new
R library is entered into the system and the hedgtst are extracted. A text
categorization model that maps help texts to thedes in the taxonomy of services is
learned on the R functions that already appeathé taxonomy (it would also be
possible to use documentations of other servicghdrtaxonomy as well). Then, for
each function of the library the following steps axecuted:

1. The inputs and outputs are extracted by regularesspons. R data types are
mapped to grid data types by a library-specifimgtation table, if this data
type has already been processed.

2. The function is mapped to its predicted node in tdo@nomy by the text
categorization model.

3. The user inspects the metadata that is proposélebsystem and corrects it,
if necessary.

4. |If the user has changed the mapping of R data tiggsd data types, this is
entered in the mapping table

5. If the user has changed the mapping of the fundtitm the taxonomy, an
updated mapping model is learned on the old datsthe new function.

In the next section, we will describe in detail htmatearn the mapping model, and how
to set up an optimal order in which the functiohewdd be processed.

Some related work exists. An automatic extractibmetadata for services has been
investigated in [15], where the semantics of patarsehas been characterized by the
connections of the service in tried and tested flmns. This means that this approach
take place only after the initial integration oétbkervices and after a number uses of the
services in a workflow, in contrast to the one prgsd in this paper. The approach
described in [16] uses metadata in the form ofr@ology over possible mismatches of
outputs and inputs and of services, which is aleduo find appropriate functions to
perform the necessary translations. This approaualdgrove to be an ideal addition to
our approach to handling inputs and outputs, whidles on the administrator to make
the necessary translation between R data typedaadypes in the workflow.

4. Experiments

Nine R libraries were chosen for the experiments @nducted. Out of these nine
libraries four libraries provide basic data minisgd general purpose functions. These
arerpart (25), kernlab (50), €1071 (44) andcluster (55). The remaining five libraries
are Bioconductor libraries, specifically designest fenomic analysisaffy (56),
affyPLM (14), ringo (25), marray (67) andxps (91). The number in brackets following
the library name indicates the number of functitreg the library contains, making a
total of 419 functions in all.

These functions were mapped to a taxonomy of fanstithat was defined for our
experiments. Because of the limited number of fonst we opted to not use an
existing taxonomy, which are usually very finelyaigred, but design a new one that
contains the basic types of functions that appedata mining tasks.
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Figure 2: Taxonomy of services

Figure 2 shows the taxonomy. The root node hafotlmving six child nodes:

1.

5.
6.

Preprocessing: this node contains functions tletesponsible for all kinds of
preprocessing of the data, e.g. transformatioteriilg and normalization. The
input of the functions belonging to this node idada set and the output is the
transformed data set.

Functions: this node contains a variety of fundidmat perform a particular
task on the data set. This node is further subddithto input functions,
output functions, learners, and learner applicdfimettions

Data: consists of functions that contain all kimdslata. This node is further
subdivided into datasets, data types, models, arfdnmance values
Validation: consists of functions that compute fherformance of a given
functions over a data set. These are generalligtitat functions.
Postprocessing: consists of functions that transfitie data after the analysis.
Auxiliary: this node basically contains functiomgt cannot be sorted into any
other nodes.

After the manual mapping of functions to nodes,ghstprocessing node received only
two functions, which came from a single library.rRbis reasons, this branch was
ignored in the following experiments. For the vatidn, a process of batch validation
has been used. In this process, a model is leanmélde data of all libraries except one,
and then tested on the data of the remaining lbrEhis process is iterated for each of
the libraries. Compared to a standard cross-vadidathis better reflects the envisioned
use case of adding a complete additional librampéoGrid system.
In order to investigate whether it is possible éarh the mapping of functions,

represented as help texts, into the taxonomy,dheviing process was designed: help
text were converted to lower case, stop words wemgved and stemming using the



Porter stemmer was applied. This is a standardr@cepsing in Textmining [12].
Following the bag-of-words approach, texts wereveoted into vectors of word
counts, where words appearing in less than 1%eofdhkts or more than all but 1% of
the text were removed. Again, this is standard tewhing procedure, with the
exception of using word counts instead of TFIDRdeas (normalized word counts),
which performed significantly worse in our experittee The multi-label classification
problem was solved by a Support Vector Machine ($Mwhich is the state-of-the-art
approach for text classification [14], where bipariSVMs were converted to multi-
class classifiers using a one-against-rest approach

In a first experiment, we investigated how goodphablem of mapping a function
to the 6 top-level branches of the taxonomy co@dblved. Table 1 shows the results.
Overall, a classification accuracy of 70.3% coutddzhieved, which is significantly
larger than the default accuracy of 36.3% (the wlefsonsists of sorting all functions
into the largest branclfuynctions, which correctly classifies 152 out of 419).

Table 1. Results for prediction ofllevel nodes

trueaux truedata truefunc truepre  truevali Class precison

pred aux 63 6 24 13 p 58.3%
pred data 12 68 5 6 L 73.8%
pred func 16 5 116 10 | 78.4%

pred pre 13 1 7 42 4 62.7%
pred vali 0 1 0 1 1 33.3%

60.6% 84.0% 76.3% 58.3% 11.1%
class recall Total accuracy 70.26% - 9.46%

Applying the same approach to the 2nd-level preatigbroblem gives an accuracy
of 67.3%. The decrease in accuracy in lower leigksxpected, because of the lower
ratio of examples over classes (the lower the Jetld more nodes have to be
predicted). In order to investigate if a combinatiof the - and 2%level classifiers
could improve the situation, we investigated if tieerelation between both classifiers
at the ' level, i.e. we checked if a function that was djspredicted at the"2 level
was at least in the righf'level branch. It turned out that of the 137 fuons that were
falsely predicted at the"2level, 13 were at least put into the corretelel branch,
such that the™ level classifier's performance at th&lével is 70.4%. Hence, we can
conclude that the direct prediction of all nodestlie taxonomy is superior to an
iterative prediction on multiple levels.

As promising as the results so far are, they agarlyl not optimal. To find an
explanation for this, it is instructive to have laser look at our process of validation.
As explained, we employ a so-called batch validatimeaning we iteratively remove
the functions from one library from the data searh a model on the remaining
functions, and test this model on the selectectibrThis directly models our use case
of integrating metadata of a new R library baseditimaries with existing metadata.

However, if we employ standard cross-validationerehthe examples to test the
model on are selected randomly, we notice thatatteuracy rises from 70.3% to
79.4%. This is an indication that it can be hardrémsfer models from one library to
another, such that information from the same ljprean very much improve the
classification process.
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Figure 3: Learning curvefor Rpart library with activelearning

Another interesting experiment is to compare thdgpmance of the classification
process on different kinds of libraries. The 9 dities that were selected for our
experiments consist of 5 libraries of the Biocondugroject, i.e. contain specific
bioinformatics functions, and 4 general R librari@€mparing the batch-validated
accuracies shows that on the Bioconductor libraalese the accuracy falls to 65.1%,
while on the general R libraries alone it rises7#8%, compared to 70.3% on all
libraries. This shows that in particular the Biodaaotor libraries are hard to model.

This motivates the approach to add functions tlaehbeen already checked by
the user to the training set and update the cleasn function during the metadata
extraction process. This process can further benig®d, if we present the user the
functions to be checked not in a random order, daléct those functions first, for
which the model is particularly unsure. This appfgavhich tries to make optimal use
of the user's feedback in the sense that a higkase in accuracy can already be seen
with little user feedback, is known as active léagr13].

In Figure 3 the learning curve (plot of accuracgmomumber of examples checked
by the user) for th&®part library can be seelRpart contains a total of 25 functions. As
can be seen, after selecting only 2 functionsether is already reduced by half. After
selecting 9 of the 25 functions, perfect accuraay be achieved. A similar result has
been obtained with thaffy library, where accuracy was raised from 53.7%3®0%
after adding 5 functions, and error is reduced &if &fter 13 of the 54 functions. Note
that with the active learning approach in our cpeefect accuracy will always be
achieved, as we are working only on a finite nundfdunctions in each library, all of
which the administrator will eventually have chetkenless he decides to trust the
system completely.



5. Conclusions and Future Work

We have presented an approach where with the catinof a generic execution
service for a scripting language and textminingligdpto semi-structured help texts it
is possible to semi-automatically integrate funsiof this language into a grid system.
Results show that while a completely automaticaetion of metadata is too complex,
an interactive approach that exploits feedbackefadministrator can greatly improve
the correctness of the extracted metadata. Therefinis approach significantly
reduces the administrative overhead in integratieyy functions as services and makes
it possible to easily provide a vast number of fiomality in the grid system.

Limitations of the proposed approach exist for fiorts with parameter-dependent
output, which is easily defined in the R langualget hard to model in webservice
definitions. It should be possible to transfer g@posed to other scripting and
programming languages, provided adequate docunm@mtst available. The practical
investigation and the generality of it will be aget of future work. It would also be
very interesting to investigate the possibilitiésrtegrating other information such as
actual execution traces of the functions or theaige patterns in workflows to optimize
and possibly refine the classification.
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