
Metadata Extraction using Text Mining

Shivani SETH, Stefan RÜPING1 and Stefan WROBEL
Fraunhofer IAIS

Schloss Birlinghoven, 53754 St. Augustin, Germany
{shivani.seth,stefan.rueping,stefan.wrobel}@iais.fraunhofer.de

Abstract. Grid technologies have proven to be very successful in the area of
eScience, and healthcare in particular, because they allow to easily combine
proven solutions for data querying, integration, and analysis into a secure, scalable
framework. In order to integrate the services that implement these solutions into a
given Grid architecture, some metadata is required, for example information about
the low-level access to these services, security information, and some
documentation for the user. In this paper, we investigate how relevant metadata
can be extracted from a semi-structured textual documentation of the algorithm
that is underlying the service, by the use of text mining methods. In particular, we
investigate the semi-automatic conversion of functions of the statistical
environment R into Grid services as implemented by the GridR tool by the
generation of appropriate metadata.

Keywords. Metadata, Text Mining

1. Introduction

Grid technologies have proven to be very successful in the area of eScience, and
healthcare in particular, because they allow to easily combine proven solutions for data
querying, integration, and analysis into a secure, scalable framework. There are a
number of projects that aim at developing Grid-based infrastructure for post-genomic
cancer clinical trials, the most advanced of which are NCI’s caBIG2 (Cancer
Biomedical Informatics Grid) in the USA and CancerGrid3 in the UK and the ACGT4
project, in the context of which this work was developed

In order to integrate the services that implement these solutions into a given Grid
architecture, some metadata is required, for example information about the low-level
access to these services, security information, and some documentation for the user.

In this paper, we investigate how relevant metadata can be extracted from a semi-
structured textual documentation of the algorithm that is underlying the service, by the
use of text mining methods. In particular, we investigate the semi-automatic conversion
of functions of the statistical environment R [1] into Grid services as implemented by
the GridR tool [2] by the generation of appropriate metadata. While the problem of
metadata extraction has already been addressed in the field of ontology population [3]
or in the area of digital libraries, for example for collections of text documents [4] or

1
 Corresponding Author.

2 https://cabig.nci.nih.gov
3 http://www.cancergrid.org
4 http://eu-acgt.org

images [5], the field of metadata for grid services still provides many challenges. One
reason is that a grid service is a very complex object, which is usually not described in
a uniform and standardized way. In addition, integrating new services often requires
manual integration work by the administrator anyway, such that the additional setup of
metadata is not much additional work. In contrast, the approach proposed in the paper
does rely on a more standardized form of documentation – R help text – and a generic
service for the setup of specific single services which very much minimizes the
administrator’s work.

The remainder of the paper is structured as follows: the next section introduces the
GridR service, for which we want to extract metadata, and the ACGT system in the
context of which GridR was developed. Section 3 describes our approach to the
extraction of metadata, which is empirically evaluated in Section 4. Section 5
concludes.

2. GridR

GridR is a generic service for the gridified execution of scripts that are written in the
statistical language R. GridR was developed in the context of the project ACGT.
Before we introduce GridR in detail, let us shortly describe the ACGT system and its
approach to metadata.

2.1.The ACGT System

In recent years, the rapid development of high-throughput genomics and post-
genomics technologies has provided clinicians fighting cancer with new discovery
paths and has opened the possibility to develop patient-specific treatment strategies.
However, the amount of information now available for each patient (e.g. in microarray
context from 10’000s to 100’000s of variables summarizing up-to millions of array
features) has rendered difficult the isolation of the clinically relevant information from
all available data. Considering the current size of clinical trials (hundreds of patients),
there is a clear need, both from the viewpoint of the fundamental research and from
that of the treatment of individual patients, for a data analysis environment that allows
the exploitation of this enormous pool of data. This is the aim of the Advancing
Clinico-Genomics Trials on Cancer (ACGT) project. ACGT aims at developing an
open-source IT infrastructure to provide the biomedical community with the tools
needed to integrate complex clinical information and make a concrete step towards the
tailorization of treatment to the patient.

On the data side, the ACGT environment is designed to be versatile and will allow
the integration of high-throughput databases with data both from existing (e.g.
microarrays, imaging) and future technologies (e.g. high-throughput proteomics). The
design of the platform considers the integration of private (i.e. trial-specific) databases
with public ones, thus making publicly available datasets potentially immediately
available for hypothesis validation and meta-analyses.

 On the methodology side, the ACGT platform is designed to be modular, allowing
to integrate additional data analysis tools (software, both open source and commercial,
web services) as plugins, as they become available. Considering that the amount of data
generated is expected to rise to several gigabytes of data per patient in a close future
access to high-performance computing resources will be unavoidable. Hence, Grid

computing [6] appears as a promising technology. Access and use of Grid-based
resources is thus an integral part of the design of the infrastructure.

An early decision in the ACGT project was that the statistical package R, which in
conjunction with the Bioconductor project [7] has quickly become a quasi-standard in
the field of bioinformatics, should become a core data analysis tool. This led to the
implementation of GridR, which is described in the next section.

The ACGT approach to metadata heavily relies on the introduction of a central
metadata repository [8], in which all information about services, workflows, data types,
and virtual organizations is stored. Both the ACGT workflow environment and several
metadata-aware services make heavy use of the metadata repository.

2.2.GridR

GridR is one of the important analysis tools to be used in the ACGT environment.
GridR is based on the open-source statistical package R. The R environment provides a
broad range of state-of-the-art statistical, graphical techniques and advanced data
mining methods (including comprehensive packages for linear and non-linear
modeling, cluster analysis, prediction, hypothesis tests, resampling, survival analysis,
time-series analysis), it is easy extensible and turned out as the de facto standard for
statistical research and many applied statistics project, especially in the biomedical
field. The associated project Bioconductor addresses the needs of the biomedical and
biostatisticians community for genomic data-analysis oriented R packages. Numerous
methods available as R/Bioconductor packages and considered experimental a few
years ago have been stabilized and became accepted standard in the analysis of high-
throughput genomic data.

In the ACGT analysis environment, R is used as a user interface and as an analysis
tool. R as user interface is supposed to serve as programming language interface to the
ACGT environment. Used as analysis tool, the goal is to achieve a seamless integration
of the functionality of R and the ACGT semantic data services in a grid environment,
hiding complexity of the grid environment. In order to achieve this level of integration,
appropriate metadata is necessary.

In a typical usage scenario, the user wants to execute an existing R script. In order
to do that, he has to follow some very easy programming guidelines (basically reading
script input from a fixed variable x and writing the output of the script into another
fixed variable y). He then uploads the script to the metadata repository, in the process
of which he has to define the input and output types. The script then becomes available
as a standard service, which can be executed in the workflow environment.

In the execution of the script, the generic GridR service is called, which loads the
actual script from the metadata repository, embeds the R code into appropriate code to
download the input and upload the results directly from within R, and executes the
script using R in batch mode.

However, with the availability of high-quality functions in existing R libraries5, it
is often already possible to achieve the needed functionality with a single existing R
function. Hence, it is completely meaningful to make available services for each of the
single functions in a library. In addition, questions of automatic checking and re-
usability of algorithms can be addressed much simpler at the level of workflows than at
the level of scripts.

5 see the Comprehensive R Archive Network http://cran.r-project.org

3. Automatic Extraction of Metadata

In Grid systems, metadata is used to describe a service in order to allow automatically
integrating it into the system, and allowing the users to understand the operation of the
service. In general, metadata can be divided into three categories

���� Technical metadata contains all information that is necessary to access the
service, such as its name, its URL, and its signature, i.e. a description of its
input and output types. WSDL [9] is a prominent example of a language to
express this type of metadata.

���� Administrative metadata holds information about the owner of the service
and the terms under which one is allowed to operate the service. For example,
the Dublin Core Metadata Element Set [10] – which is frequently used to
describe digital media, but can also be applied to services - holds the elements
Creator, Publisher, Contributor, and Rights to cover the administrative
aspects. In Grid systems, security information, such as necessary access rights
and where to request access, is important administrative information.

���� Descriptive metadata finally contains a description of the semantics of the
service. It is not necessary for the operation of the services, but for the user to
find an appropriate service for their task. Semantics can be described by a
simple documentation text, but often ontologies or taxonomies are used to
allow a standardized, machine-readable description. A prominent example in
the field of biological data can be found in the BioMOBY initiative [11]. The
goal of BioMOBY is to create an ontology of bioinformatics data types, define
a data syntax for this ontology, create an open API over this ontology and
register services in an ontology-aware registry for the MOBY-S system.

In the case of the GridR service, which is a generic service which can be
instantiated by deploying different R scripts, administrative metadata is usually
constant for all scripts. Likewise, parts of the technical metadata can be shared, as it is
essentially the same service that implements the execution of all R scripts. Metadata
that is dependent on the R script consists of the input and output types and the semantic
metadata. Hence, in the remainder of this paper we will only address the questions of
how to extract the input and output types of an R function, and how to order the
function into a taxonomy of services.

3.1.Metadata Extraction

In our approach, we envision the following use case: a system administrator is tasked
with integrating a new R library into the Grid system. After installing the actual
software, the critical step is to set up appropriate metadata for each function. Luckily, R
packages already come with a semi-structured textual documentation of all functions,
an example of which can be seen in Figure 1. The documentation is structured into
different sections such as Description, Usage, Arguments, Details, Value, References,
See Also, and Example. As one can see, the section Arguments is again structured into a
list of names and descriptions of the single parameters. The section Value describes the
output in a similar, slightly less structured format.

As the metadata is crucial for the operation of the Grid system, the extraction process is
required to achieve perfect accuracy. Wrong metadata on the input and output types
would prohibit the function to be executed properly. A wrong entry of the function in
the taxonomy of services would stop the user from discovering it in the first place.
We will now present how to make use of text mining [12] methods to solve this task.
However, in text classification tasks it is difficult to achieve perfect accuracy, in
particular on data sets so small as in the case of metadata descriptions. Hence, we aim
for a semi-automatic procedure that supports the administrator as much as possible in
the setup of the metadata, but relies on the administrator for the final check. This
procedure simplifies the metadata extraction process in two ways:

� The identification of input and output types reduces to a library-specific
mapping of R data types to Grid data types. Generally, Grid data types tend to
be more semantically enhanced than R data types, where usually a single data
type (data.frame) is used for all data sets. However, in the context of a single
library, it is reasonably safe to assume that the R data type does not map to
multiple Grid data types. As the documentation of the function arguments and
values is already highly structured in R help texts, the identification of the
single arguments themselves can be achieved by simple regular expressions.

� An iterative procedure allows to significantly increase the available data for
the extraction process: In a standard approach, data of functions of other
libraries, that have already been integrated into the taxonomy of services,
would be used as the basis for learning the extraction process. With an
iterative procedure, it is also possible to use information of already processed
functions of the same library for the following functions. We will later see that

Figure 1: R help text for function "diana"

there may be problems in transferring text mining models from one library to
the other, such that data of the same library, even if it is few, is very valuable.

In summary, our metadata extraction algorithm can be described as follows: first, a new
R library is entered into the system and the help texts are extracted. A text
categorization model that maps help texts to their nodes in the taxonomy of services is
learned on the R functions that already appear in the taxonomy (it would also be
possible to use documentations of other services in the taxonomy as well). Then, for
each function of the library the following steps are executed:

1. The inputs and outputs are extracted by regular expressions. R data types are
mapped to grid data types by a library-specific translation table, if this data
type has already been processed.

2. The function is mapped to its predicted node in the taxonomy by the text
categorization model.

3. The user inspects the metadata that is proposed by the system and corrects it,
if necessary.

4. If the user has changed the mapping of R data types to grid data types, this is
entered in the mapping table

5. If the user has changed the mapping of the function into the taxonomy, an
updated mapping model is learned on the old data plus the new function.

In the next section, we will describe in detail how to learn the mapping model, and how
to set up an optimal order in which the functions should be processed.
Some related work exists. An automatic extraction of metadata for services has been
investigated in [15], where the semantics of parameters has been characterized by the
connections of the service in tried and tested workflows. This means that this approach
take place only after the initial integration of the services and after a number uses of the
services in a workflow, in contrast to the one presented in this paper. The approach
described in [16] uses metadata in the form of an ontology over possible mismatches of
outputs and inputs and of services, which is also used to find appropriate functions to
perform the necessary translations. This approach could prove to be an ideal addition to
our approach to handling inputs and outputs, which relies on the administrator to make
the necessary translation between R data types and data types in the workflow.

4. Experiments

Nine R libraries were chosen for the experiments are conducted. Out of these nine
libraries four libraries provide basic data mining and general purpose functions. These
are rpart (25), kernlab (50), e1071 (44) and cluster (55). The remaining five libraries
are Bioconductor libraries, specifically designed for genomic analysis: affy (56),
affyPLM (14), ringo (25), marray (67) and xps (91). The number in brackets following
the library name indicates the number of functions that the library contains, making a
total of 419 functions in all.
These functions were mapped to a taxonomy of functions that was defined for our
experiments. Because of the limited number of functions, we opted to not use an
existing taxonomy, which are usually very finely grained, but design a new one that
contains the basic types of functions that appear in data mining tasks.

Figure 2 shows the taxonomy. The root node has the following six child nodes:

1. Preprocessing: this node contains functions that are responsible for all kinds of
preprocessing of the data, e.g. transformation, filtering and normalization. The
input of the functions belonging to this node is a data set and the output is the
transformed data set.

2. Functions: this node contains a variety of functions that perform a particular
task on the data set. This node is further subdivided into input functions,
output functions, learners, and learner application functions

3. Data: consists of functions that contain all kinds of data. This node is further
subdivided into datasets, data types, models, and performance values

4. Validation: consists of functions that compute the performance of a given
functions over a data set. These are generally statistical functions.

5. Postprocessing: consists of functions that transform the data after the analysis.
6. Auxiliary: this node basically contains functions that cannot be sorted into any

other nodes.
After the manual mapping of functions to nodes, the postprocessing node received only
two functions, which came from a single library. For this reasons, this branch was
ignored in the following experiments. For the validation, a process of batch validation
has been used. In this process, a model is learned on the data of all libraries except one,
and then tested on the data of the remaining library. This process is iterated for each of
the libraries. Compared to a standard cross-validation, this better reflects the envisioned
use case of adding a complete additional library to the Grid system.

In order to investigate whether it is possible to learn the mapping of functions,
represented as help texts, into the taxonomy, the following process was designed: help
text were converted to lower case, stop words were removed and stemming using the

Figure 2: Taxonomy of services

Porter stemmer was applied. This is a standard preprocessing in Textmining [12].
Following the bag-of-words approach, texts were converted into vectors of word
counts, where words appearing in less than 1% of the texts or more than all but 1% of
the text were removed. Again, this is standard text mining procedure, with the
exception of using word counts instead of TFIDF features (normalized word counts),
which performed significantly worse in our experiments. The multi-label classification
problem was solved by a Support Vector Machine (SVM), which is the state-of-the-art
approach for text classification [14], where binaries SVMs were converted to multi-
class classifiers using a one-against-rest approach.

In a first experiment, we investigated how good the problem of mapping a function
to the 6 top-level branches of the taxonomy could be solved. Table 1 shows the results.
Overall, a classification accuracy of 70.3% could be achieved, which is significantly
larger than the default accuracy of 36.3% (the default consists of sorting all functions
into the largest branch, functions, which correctly classifies 152 out of 419).

Table 1. Results for prediction of 1st level nodes

 true aux true data true func true pre true vali Class precision
pred aux 63 6 24 13 2 58.3%
pred data 12 68 5 6 1 73.8%
pred func 16 5 116 10 1 78.4%
pred pre 13 1 7 42 4 62.7%
pred vali 0 1 0 1 1 33.3%

60.6% 84.0% 76.3% 58.3% 11.1% class recall
Total accuracy 70.26% +/- 9.46%

Applying the same approach to the 2nd-level prediction problem gives an accuracy

of 67.3%. The decrease in accuracy in lower levels is expected, because of the lower
ratio of examples over classes (the lower the level, the more nodes have to be
predicted). In order to investigate if a combination of the 1st- and 2nd-level classifiers
could improve the situation, we investigated if the correlation between both classifiers
at the 1st level, i.e. we checked if a function that was falsely predicted at the 2nd level
was at least in the right 1st level branch. It turned out that of the 137 functions that were
falsely predicted at the 2nd level, 13 were at least put into the correct 1st-level branch,
such that the 2nd level classifier's performance at the 1st level is 70.4%. Hence, we can
conclude that the direct prediction of all nodes in the taxonomy is superior to an
iterative prediction on multiple levels.

As promising as the results so far are, they are clearly not optimal. To find an
explanation for this, it is instructive to have a closer look at our process of validation.
As explained, we employ a so-called batch validation, meaning we iteratively remove
the functions from one library from the data set, learn a model on the remaining
functions, and test this model on the selected library. This directly models our use case
of integrating metadata of a new R library based on libraries with existing metadata.

However, if we employ standard cross-validation, where the examples to test the
model on are selected randomly, we notice that the accuracy rises from 70.3% to
79.4%. This is an indication that it can be hard to transfer models from one library to
another, such that information from the same library can very much improve the
classification process.

Another interesting experiment is to compare the performance of the classification
process on different kinds of libraries. The 9 libraries that were selected for our
experiments consist of 5 libraries of the Bioconductor project, i.e. contain specific
bioinformatics functions, and 4 general R libraries. Comparing the batch-validated
accuracies shows that on the Bioconductor libraries alone the accuracy falls to 65.1%,
while on the general R libraries alone it rises to 77.8%, compared to 70.3% on all
libraries. This shows that in particular the Bioconductor libraries are hard to model.

This motivates the approach to add functions that have been already checked by
the user to the training set and update the classification function during the metadata
extraction process. This process can further be optimized, if we present the user the
functions to be checked not in a random order, but select those functions first, for
which the model is particularly unsure. This approach, which tries to make optimal use
of the user's feedback in the sense that a high increase in accuracy can already be seen
with little user feedback, is known as active learning [13].

In Figure 3 the learning curve (plot of accuracy over number of examples checked
by the user) for the Rpart library can be seen. Rpart contains a total of 25 functions. As
can be seen, after selecting only 2 functions, the error is already reduced by half. After
selecting 9 of the 25 functions, perfect accuracy can be achieved. A similar result has
been obtained with the Affy library, where accuracy was raised from 53.7% to 65.0%
after adding 5 functions, and error is reduced by half after 13 of the 54 functions. Note
that with the active learning approach in our case perfect accuracy will always be
achieved, as we are working only on a finite number of functions in each library, all of
which the administrator will eventually have checked, unless he decides to trust the
system completely.

Figure 3: Learning curve for Rpart library with active learning

5. Conclusions and Future Work

We have presented an approach where with the combination of a generic execution
service for a scripting language and textmining applied to semi-structured help texts it
is possible to semi-automatically integrate functions of this language into a grid system.
Results show that while a completely automatic extraction of metadata is too complex,
an interactive approach that exploits feedback of the administrator can greatly improve
the correctness of the extracted metadata. Therefore, this approach significantly
reduces the administrative overhead in integrating new functions as services and makes
it possible to easily provide a vast number of functionality in the grid system.

Limitations of the proposed approach exist for functions with parameter-dependent
output, which is easily defined in the R language, but hard to model in webservice
definitions. It should be possible to transfer the proposed to other scripting and
programming languages, provided adequate documentation is available. The practical
investigation and the generality of it will be a target of future work. It would also be
very interesting to investigate the possibilities of integrating other information such as
actual execution traces of the functions or their usage patterns in workflows to optimize
and possibly refine the classification.

References

[1] R Development Core Team, R: A language and environment for statistical computing, R Foundation for
Statistical Computing, Vienna, Austria, 2008, http://r-project.org.

[2] D. Wegener, T. Sengstag, S. Sfakianakis, S. Rüping, A. Assi, GridR: An R-based grid-enabled tool for
data analysis in ACGT clinico-genomic trials, Proceedings of the 3rd International Conference on e-
Science and Grid Computing (eScience 2007), Bangalore, India, 2007.

[3] P. Buitelaar, P. Cimiano (Eds.), Ontology Learning and Population: Bridging the Gap between Text and
Knowledge, Frontiers in Artificial Intelligence and Applications Series, Vol. 167, IOS Press, 2008.

[4] H. Han, C. L. Giles, E. Manavoglu, H. Zha, Z. Zhang, E. A. Fox, Automatic Document Metadata
Extraction using Support Vector Machines, Proceedings of the 3rd ACM/IEEE-CS Joint Conference on
Digital Libraries (2003), 37-48.

[5] L. Diaz, C. Martin, M. Gould, C. Granell, M. A. Manso, Semi-automatic Metadata Extraction from
Imagery and Cartographic Data, Proc. Geoscience and Remote Sensing Symposium (2007), 3051-3052.

[6] I. Foster, C. Kesselman, S. Tuecke, The Anatomy of the Grid: Enabling Scalable Virtual Organizations,
International Journal of High Performance Computing Applications 15:3 (2001), 200-222.

[7] R. Gentleman, V. Carey, W. Huber, R. Irizarry, S. Dudoit, Bioinformatics and Computational Biology
Solutions Using R and Bioconductor, Springer, 2005.

[8] S. Ramirez, J. Karlsson, M. García, J. Rios Perez, O. Trelles: Repositories for bioinformatics web-
services, Proceedings of VIII Jornadas de Bioinformática, pp. 50--56, Valencia, Spain, 2008.

[9] The W3 consortium, Web Services Description Languagge, http://www.w3.org/TR/WSDL
[10] Dublin Core Metadata Element Set, Version 1.1, http://dublincore.org/documents/2008/01/14/dces/
[11] M. D. Wilkinson, M. Links, BioMOBY: an open-source biological web services proposal, Briefings in

Bioinformatics 3:4 (2002), 331-341
[12] R. Feldman, J. Sanger, The Text Mining Handbook, Cambridge University Press, 2007.
[13] D. A. Cohen, Z. Ghahramani, M. I. Jordan, Active Learning with Statistical Models, Journal of

Artificial Intelligence Research 4 (1996), 129-145.
[14] T. Joachims, Text categorization with support vector machines: Learning with many relevant features,

Proc. ECML’98 (1998), 137-142.
[15] K. Belhajjame, S. M. Embury, N. W. Paton, R. Stevens, C. A. Goble, Automatic Annotation of Web

Services based on Workflow Definitions, Proc. 5th International Semantic Web Conference, Athen, GA,
USA, 2006.

[16] K. Belhajjame, S. M. Embury, N. W. Paton, On Characterising and Identifying Mismatches in
Scientific Workflows, Proc. DILS (2006), U. Leser, F. Naumann (eds.), LNBI 4074, 240-247.

