
Workflows for Intelligent Monitoring using
Proxy Services

Stefan RÜPINGa,1, Dennis WEGENER a, Stelios SFAKIANAKIS
b

and Thierry SENGSTAG c

a
 Fraunhofer IAIS, Schloss Birlinghoven, 53754 St. Augustin, Germany

b Biomedical Informatics Laboratory, Institute of Computer Science FORTH, Greece
cSwiss Institute of Bioinformatics, Bâtiment Génopod, 1015 Lausanne, Switzerland

Abstract. Grid technologies have proven to be very successful in the area of
eScience, and in particular in healthcare applications, where they allow combining
flexible, high-speed data processing with essential requirements of data security
and privacy. While the applicability of workflow enacting tools for biomedical
research has long since been proven, the practical adoption into regular clinical
research has some additional challenges. In this paper, we investigate the case of
data monitoring, and how to seamlessly implement the step between a one-time
proof-of-concept workflow and high-performance on-line monitoring of data
streams, as exemplified by the case of long-running clinical trials. We will present
an approach based on proxy services that allows executing single-run workflows
repeatedly with little overhead.

Keywords. Grid, Workflow, Monitoring, Proxy Services

1. Introduction

Grid technologies [1] have proven to be very successful in the area of eScience where
they allow to combine flexible, high-speed and large-volume data processing with
essential practical considerations such as cross-organizational security and access
control, resource management and load balancing, billing, or data security and privacy.
In particular the latter is of essential importance in the field of healthcare in general and
clinical trials in particular, which we will investigate in this paper. Several legal and
ethical requirements and guidelines exist which have to be taken into account in the
setup of an eHealth Grid system [2].

The applicability of workflow enacting tools for biomedical research has long
since been proven [3]. However, the practical adoption into regular clinical research
has some additional challenges. In this paper, we investigate the case of long-running
clinical trials and how to seamlessly implement the step between a one-time proof-of-
concept workflow and high-performance on-line monitoring of data streams

A clinical trial is a formal research procedure in which a novel treatment (or
therapeutic procedure) is compared to an existing treatment to assess its efficiency. The
questions addressed by the trial can be related to drug toxicity, severity of side effects,
improvement of patient survival, etc. As part of the trial planning, a statistical design is

1
 Corresponding Author (stefan.rueping@iais.fraunhofer.de).

thus setup, in which the number of patients expected in each alternative treatment
branch is defined, based on the anticipated difference in treatment outcome. After the
beginning of the trial, patients are gradually enrolled and a continuous monitoring of
treatment outcome is performed. The trial is stopped in the following cases:

1. Enough data has been collected to satisfactorily answer the scientific
questions as specified in the definition of the trial.

2. Convincing evidence exists that one of the alternative treatments is
significantly worse than the alternative. This may either be the case because
the new treatment exhibits some severe side effects, or because it has been
proven to be significantly more effective than the existing alternatives. In this
case, it would be unethical to treat any more patients with the less effective
alternative, and the trial has to be closed.

While the first case is straight-forward to implement with current tools, because it
only requires a one-time data analysis after the data collection phase has been finished,
the second case actually requires an event-driven continuous monitoring of the data of
all patients in the trial. When we consider the case of an end-to-end system, new data
may arrive at any time, driven by the researchers involved in the trial may introduce a
severe delay in recognizing safety hazards to the patients, possibly violating ethical
requirements. Instead, some kind of automatic alerts will be necessary. The straight-
forward solution to this problem would be to repeatedly execute the data analysis
workflow in short time intervals. However, considering the potential of an online
integration of clinical trials with electronic healthcare records (i.e. faster access to
higher volumes of data per patient), and the fact that an organization typically executes
multiple trials in parallel (with numbers expected to increase with the availability of
integrated clinical trial systems), it is clear that this solution does not scale well enough
to be practical.

The work in this paper is based on the ACGT2 project [4], which has the goal of
implementing a secure, semantically enhanced end-to-end system in support of large
multi-centric clinico-genomic trials, meaning that it strives to integrate all steps from
the collection and management of various kinds of data in a trial up to the statistical
analysis by the researcher. From the technological point of view, ACGT offers a
modular environment in which new data processing and data mining services can be
integrated as plug-ins as they become available. ACGT also provides a framework for
semantic integration of data sources (e.g., clinical databases) and data mining tools,
through the use of a specifically developed ontology and of a semantic mediator. In the
current version, the various elements of the data mining environment can be integrated
into complex analysis pipelines through the ACGT workflow editor and enactor.

In this paper, we will present an approach based on so-called proxy services that
allows to easily convert single-run workflows into data monitoring tools with little
overhead. The remainder of the paper is structured as follows: first, we will give an
introduction to proxy services in general, before we describe how to use them to
convert regular workflows into monitoring services. An experimental evaluation on a
real-world biomedical data analysis workflow follows. We close the paper with some
outlook into future work.

2 http://eu-acgt.org

2. Proxy Services

In ACGT a generic data protection framework has been defined which is based on
a technical security infrastructure as well as on organizational measures and contractual
obligations [1]. The definition of such a framework was required so that sensitive
patient data are managed in a secure, authorized, and audited way. Most of these
security requirements are dealt with the Grid infrastructure layer. In particular the Grid
Security Infrastructure (GSI) [5] supports user authentication through digital signatures
and also the delegation of user privileges to a service so that this service performs an
action on the user's behalf and without the user's intervention. The delegation
mechanism is important because it allows “single sign on” for the users of the Grid.

On the other end of the spectrum we have chosen BPEL as the underlying
workflow technology, which is the de facto standard for web Services orchestration and
business process modeling [6]. Nevertheless the choice of BPEL requires an
infrastructure that would make possible the invocation of the ACGT secure grid
services from inside the BPEL-based workflows. Especially the use of GSI for securing
Web Services requires a BPEL Engine (“enactor”) that is able to invoke them without
compromising security. In particular, each BPEL workflow should also be a GSI
secured service that is able to accept the delegated user credentials and subsequently
delegate them further to all the services that need to be contacted in the context of the
specific workflow. Unfortunately BPEL and the Web Services standard security
specifications do not deal with such requirements. This problem required the
introduction of “Proxy” services that offer the bridge between the business process
view of BPEL engines and the Grid secure services of the ACGT ecosystem.

The architecture of the proxy services mechanism is depicted in Figure 1. Each

Figure 1. WorkflowEnactment Environment.

"real" ACGT service is mirrored by a corresponding "proxy service". The proxy
service has the same programmatic interface with the original service and, in its
implementation, forwards all requests to the service that it mirrors. The most important
difference between the proxy service and the target service is that the proxy service is
not contacted through GSI but through “standard” Web Services technologies.

The introduction of the proxies is to make the BPEL engine agnostic of the whole
GRID security framework. In order to achieve this, the BPEL workflows that are
deployed in the enactor do not contain the invocation of the original ACGT services
but the invocation of the corresponding proxy services in their places. The proxy
services should be able to make GSI-secured invocations to their real parties and
therefore they need access to the user's certificate that originated the workflow
execution. To do that the user's credentials are “intercepted” in a service just before the
enactor that we call "enactor proxy". The enactor proxy accepts the request for the
execution of the workflow as if it was the real enactor, extracts the security
information, creates a new proxy certificate with delegation, and stores this certificate
in a certificate repository under a newly created “enactment” ID. It subsequently makes
the normal call to the real enactor passing, in addition to the workflow input
parameters, the ID of the certificate.

The final piece to make the whole thing work is the BPEL workflows: they are
constructed in such a way so that the enactment ID that references the certificate in the
database is passed as an additional parameter to all the proxy services contacted
throughout the execution of the workflow. The proxy services use this ID to retrieve
the stored user credentials and make GSI-secured invocation to the real ACGT service.

In order to support the repeated execution of workflows in an efficient way it is
necessary to take advantage of the results of past executions. This is a well known
programming technique termed “memoization”, in the sense that the previous results
are “remembered” and reused, wherever this is possible, to make future executions go
faster. In our case the repeated executions of the workflows that are monitored can be
speeded up if many of the participating data processing steps need not be performed
because their inputs have not be changed. There is a strong requirement in order for
this optimization to take place though: these processing steps should be deterministic or
“referentially transparent”, which means that for the same set of inputs they always
yield the same outputs. Even if it appears to be a strong requirement, a lot of analytical
and processing activities are indeed of this kind. Counterexamples include external
databases that may be updated independently.

In order for the proxies to work in a workflow monitoring scenario they need first
of all to be aware if the target service is deterministic. This is part of the target
service’s metadata and therefore it is readily available by the ACGT service registry
when given the specific service id. The second requirement is that the proxy services
need to be aware if they are called in the context of a workflow monitoring task. This is

Figure 2. The generation of a unique signature of the invocation parameters.

implemented through the incorporation of a “monitoring context” in the information
that is available through the enactment ID that they accept in all of their requests. A
final requirement is for the proxy services to store in this “monitoring context” past
results of their invocation along with the corresponding input values.

A final important note to make is how inputs that are supplied by reference should
be handled. An example of such a case is when an input parameter is id of a file stored
in the Grid data management service (DMS). In general, subsequent invocations with
the same input reference cannot be handled as identical because the contents of the
referenced entity may have changed in between. In this case some “deep” checking of
inputs equality should be performed such that the decision is not based on the reference
but on the value (e.g. file contents) that is referenced. Nevertheless, in the case of the
Grid DMS and its use in the context of the ACGT, equality of the file references means
equivalent contents because files are not updated: new files, and therefore file ids, are
created instead.

Storing the complete input values can result in a substantial cache size for large
inputs. A possible alternative is the use of “message digest” algorithms that accept an
arbitrary size of data and perform a hash function to produce a small string of
characters (the “hash value” or “fingerprint”) of their input. Examples of these
algorithms are the MD5, and the newer SHA family of hash functions. The most
important feature of these algorithms is that it is extremely rare for two different inputs
to have the same output digest, meaning that a significant reduction in cache size is
traded against an extremely small chance of caching errors. Furthermore in order to
deal with the situation that the same data have been processed using different grid file
references, the proxy service implementation, after every invocation of the target
service, “de-references” the parameters, i.e. downloads the files, to compute the hash
value of the data themselves that it then incorporates in the XML document to produce
the final hash value. This double hashing process is shown in Figure 2 above, where the
“Input 1” is a file identifier. In conclusion, past results are cached and indexed both by
the hash value produced by the given input parameter values and the hash value of the
contents of the files referenced if such reference parameters exist.

3. Workflows for Intelligent Monitoring

Using the caching functionality as implemented by the proxy services, it is
possible to implement a monitoring tool and convert standalone workflows into data
monitoring services. The basic idea is that as now the repeated execution of a workflow
on identical or similar data has very low overhead, we can easily repeatedly execute the
workflow and check for user-specified conditions. In detail, the setup and execution of
a monitoring task goes as follows:

1. The user sets up a workflow and registers it for monitoring. He identifies a
Boolean output of the workflow as the notification output and one Boolean
output as the termination output

2. A caching context is set up for the monitoring workflow
3. The workflow is executed by the enactor in the caching context. Note that

caching does not apply for non-deterministic services. As data access
operators are non-deterministic, this triggers a query for new or updated data.

4. If the value notification output is true, the user is alerted of new results

5. If the value of the termination output is true, the monitoring task is stopped,
else the algorithm is repeated from step 3, possibly after a pre-determined
waiting period.

The requirement of Boolean notification and termination output in Step 1 allows the
implementation of more complex criteria with the tools provided by the workflow
language. For the sake of usability, however, it is also straightforward to implement
more complex stopping criteria for other types of output directly in the monitoring tool.
Note that in Step 3 there is some optimization potential if the data access operators
support a notification mechanism when new data is available, or allows querying the
last update time of the underlying database.

A possible drawback of this implementation is the excessive use of caching.
However, an additional advantage of the proxy services is that they easily allow
detailed logging of service statistics. In particular, the total execution time of the proxy
services, the execution time of the underlying service, the caching overhead, and the
average number of calls in a given time period can be recorded. With this information,
it is easily possible (1) to check if caching is effective (caching overhead < execution
time of underlying service), and (2) to estimate the total reduction of execution time for
each service ((execution time of underlying service – caching overhead) * number of
calls). Should the size of the cache exceed a pre-determined threshold, caching can be
de-activated for services with the least total reduction of execution time.

4. Experiments

In order to illustrate the gain in efficiency in using caching, a scenario based on
simulated clinical trial has been used. In this scenario, two research centers are
enrolling patients in a clinical trial on breast cancer (hereafter called the Multi-Center
Multi-Platform or MCMP scenario). Both centers use different microarray platforms to
assess genome-wide gene expression in biopsies taken from the patients. A single
microarray is used for each biopsy, which yields up to millions of individual gene-
expression measurements. In order to compare gene-expression measurements for
biopsies obtained on a given microarray platform, a data-normalization procedure
involving many (usually all) measurements that were made with this platform is
required. Thus each time a new patient is enrolled in the study, the computationally
costly normalization procedure has to be repeated.

Now, in the scenario two platforms are used. The gene expression measured for a
biopsy collected in one of the centers will not be involved in the normalization
procedure for the data collected in the other center, which can thus be avoided.

Figure 3 shows a possible implementation of a workflow which would be typical
of such a monitoring procedure. Data are flowing from top to bottom, with files as
inputs and each horizontal block in the figure representing a GridR service [7]. The
workflow has vertical symmetry, with the left half corresponding to the data
preprocessing for one microarray platform (one research center) and the right one for
the other. The left-most and right-most input blocks at the top represent the microarray
data. (The upper-center blocks are related to microarray annotation and are not relevant
in the present scope.)

Microarray data collected in both centers are combined with the clinical data
collected from the patient (age, gender, etc.) in the trial monitoring block of the
workflow (bottommost block in Figure 3). Thus when a new patient is recruited in the

trial, two inputs of the workflow are affected: one in either of the microarray-data
related branch, and one corresponding to the clinical data. An example of patient
recruitment is represented by red circles on the figure. The workflow component
requiring an update in this case are marked by red squares, the intermediate output of
all other components being unaffected by the new data.

For the practical application of the concept described here, two microarray datasets
representing 73 patients each have been used, with the corresponding clinical data. The
microarray platform were Affymetrix HG-U133A with about 500’000 features, and
Illumina, with about 23’000 genes measured (summarizing about 600’000 array
features). The microarray-annotation related blocks identify which array features are
truly representing known genes, based on the latest gene-sequence annotation. The
feature-filtering blocks identify which array features are the most informative for a
given genes. Finally the trial monitoring block assesses the significance of a gene-
expression-based sample classifier.

In order to show up the possible performance improvements with caching, we
evaluated the runtimes of the services in the workflow shown in Figure 6 in the ACGT
system. For practical reasons, the underlying databases had to be replaced by file
inputs. However, as these data sources are non-deterministic, their execution time is
identical in both a caching and non-caching scenario anyway.

With respect to caching, the important properties of the workflow are that the left
part (Affymetrix) and right part (Illumina) can run in parallel. Each of the parts consists
of two steps, where the gene selection can only start if normalization and annotation
filtering is finished. The bottom part (combined analysis) can start when both gene

Figure 3. Possible workflow for continuous monitoring of the clinical data collected in the MCMP scenario.
The red circles indicate the data inputs that are affected by the recruitment of a new patient in one of the
research centers. The workflow components marked with a red square are those for which a new execution
is required. See text for more details.

selection steps are done. In addition, all services of the workflow except the data access
services are deterministic.

With respect to the ACGT system it is important to notice that the services receive
large inputs and outputs as references to files stored in the Grid Data Management
System (DMS). The DMS guarantees that the contents of a file cannot be changed after
being written, such that identical identifiers guarantee identical content (but not the
other way round). As discussed in Section 2, other implementations may require
different ways of efficiently checking the identity of inputs. However this does not
affect the validity of the overall caching approach.

In consequence, checking the identity of the content of files in the ACGT system
works in two phases: If the identifier of the corresponding file was cached, the input is
identical (reference check). If not, the file must be downloaded and its content must be
compared to the cached file (download check). If the content of all inputs is identical to
the values in the cache, we have a cache hit and can directly return the cached output
value without calling the actual service. If not, the service needs to be called and the
cache is updated.

For the comparison of the references we have a constant time of 1s for the check.
For the downloading and hash value comparison we assume a time of 2s plus the time
it takes to download the file. The caching is computed on a single machine where the
proxies are running. We assume that the time for caching is serial time where the
caching checks cannot be computed in parallel.

The Affymetrix and the Illumina Microarray annotation files are candidates for
taking a reference directly from the cache, as these files always have the same
identifier. The outputs of the queries to the databases are always stored in separate files
with different identifiers and thus have to be compared each time.

Caching can save time in case an input can be found in the cache and the
computation time for the check is less then the time it takes to run the service. But, of
course the caching causes overhead in case we have a cache miss so that the check of
the cache as well as the service have to be computed. In the following, we distinguish
between 3 different scenarios:

1. Workflow execution without caching: The overall workflow had a total

runtime (wall clock time) of 39m19s while the services run partially in
parallel. The serial runtime (CPU time) is 58m14s.

2. Workflow execution with caching on the same data: Assuming that none of
the data sources changed, the execution of the workflow using caching is as
follows. Depending on the specific workflow component and their inputs,
caching by reference check or caching by download and direct comparison is
used. Once all inputs of a service come from the cache, the service is not
executed and a reference cache file is directly used as output. As the data does
not change, caching can be used for each service. The CPU time and the Wall
time, as the caching is computed sequentially on single machine, is 2m43s.

3. Workflow execution with caching on partially new data: In this case we
assume that a new patient’s data arrives in the Illumina database. In our
example, the data sources “clinical database” and “microarray database”
change due to a new patient coming in. Thus, three of the services have to be
computed, for the others caching can be used. The Wall time was 34m54s and
the CPU time 36m58s.

Table 1: Execution times of the workflow in the three caching scenarios. As services can run in parallel, we
distinguish between CPU time (time spent on the calculation) and Wall time (for the overall runtime). All
times given in the format mm:ss

 No caching Same input Part diff input
Name CPU

time
Wall
time

CPU
time

Wall
time

CPU
time

Wall time

Illumina normalization 03:59 03:59 00:23 00:23 04:23 04:23
Affymetrix annot. filter 03:31 03:59 00:17 00:40 00:17 04:23
Affymetrix normalization 08:21 08:21 01:26 02:06 01:28 04:23
Illumina annot. filter 03:31 08:21 00:17 02:23 00:17 04:23
Illumina gene selection 07:54 16:15 00:02 02:25 08:20 12:43
Affy. Gene selection 09:25 17:46 00:02 02:27 00:02 12:43
Combined analysis 21:33 39:19 00:16 02:43 22:11 34:54
Sum: 58:14 39:19 02:43 02:43 36:58 34:54

Table 1 gives an overview over our experiments on the workflow execution. As
example for the time measurements, let us have a look on Step “Illumina gene
selection”. In case we do not use caching, the service has to be executed which takes a
time of 7m54s. If we execute the step with caching, but the inputs did not change, we
have a time of 1s each for the reference check of the left and right input. If the input
changed as explained, we still have a time of 1s for the reference check of the left
input, a time of 25s for the reference and download check (download 22s, service call
and check 2s) of the right input and a time of 7m54s for the service execution.

We also compare the runtimes of each individual service in 4 scenarios (see
Table 2). First using no caching at all, second the best case for caching (all inputs are
references), third the worst case while still having cache hits (all inputs have to be
downloaded) and fourth the worst case using caching which is having cache misses for
each input. Note that the computation time of the service depends on the specific input.

Table 2. Results of individual service executions. All times given in the format mm:ss

 No
caching

Cache hits
(reference)
for all inputs

Cache hits
(download)
for all inputs

Cache miss
for all
inputs

Name time time time time
Illumina normalization 03:59 00:01 00:24 04:23
Affymetrix annot. filter 03:31 00:02 00:53 04:24
Affymetrix normalization 08:21 00:01 01:28 09:49
Illumina annot. filter 03:31 00:02 00:34 04:05
Illumina gene selection 07:54 00:02 00:41 08:32
Affy. Gene selection 09:25 00:02 00:39 10:04
Combined analysis 21:33 00:03 00:54 22:27

By using caching users can profit from better total performance or usage of less

resources for the computation of a workflow. As caching causes overhead, the overall
profit depends on the likelihood with which the input data changes (and the frequency
of the workflow executions). It is obvious that for short running services caching
performs worse, but for long running services it is useful. Our experiments show that
the parallelization of the service execution saves computing time. In our example,
caching improves the performance even more. In case the data sources do not change,

the service execution is a lot faster then the normal execution. In case some of the
services have to be executed, the overall computation time was still a bit lower than the
normal execution, and the time spend on the CPUs was much lower. Thus, depending
on the changing on the input data, caching can improve the efficiency of workflow
execution with respect to both computation time and usage of computing resources.
However, the caching works only for services generating deterministic outputs.

5. Conclusions and Future Work

In this paper we presented the investigation on how to seamlessly implement the step
between a one-time proof-of-concept workflow and high-performance on-line
monitoring of data streams in the context of data monitoring. The use case of our study
was a long-running clinical trial. We introduced an approach based on proxy services
that allows executing single-run workflows repeatedly with little overhead.

A special case that is not considered in this paper is for services that are non-
deterministic because they are random or are subject to eventual numerical errors. For
these, it would be possible to introduce more complex tests in the proxy services, such
that a cache hit is already produced when the results are identical up to some tolerance
of error. However, these tests would be very much dependent on the data types and the
numerical requirements of the workflow. Another interesting point of research would
be to investigate a possible shared caching of services of multiple workflows.

Acknowledgements
Christine Desmedt and collaborators at Institut Jules Bordet, Bruxelles, and Francesca
Buffa and collaborators at University of Oxford have provided the clinical and research
data used in the MCMP scenario. Francesca Buffa provided useful advice in the
development of some of the workflow components. In addition, the authors gratefully
acknowledge the financial support of the European Commission for the Project ACGT,
FP6/2004/IST-026996.

References

[1] I. Foster. The Grid: Computing without bounds. Scientific American, 288(4):60-67, 2003.
[2] B. Claerhout, N. Forgó, T. Krügel, M. Arning, and G. De Moor, A Data Protection Framework for

Transeuropean genetic research projects, Studies in health technology and informatics, 2008.
[3] G.C. Fox and D. Gannon. Special Issue: Workflow in Grid Systems: Editorials. Concurrency and

Computation: Practice & Experience, 18(10):1009-1019, 2006.
[4] M. Tsiknakis, M. Brochhausen, J. Nabrzyski, J. Pucacki, S. Sfakianakis, G. Potamias, C. Desmedt, and

D. Kafetzopoulos. A Semantic Grid Infrastructure Enabling Integrated Access and Analysis of Multilevel
Biomedical Data in Support of Postgenomic Clinical Trials on Cancer. Information Technology in
Biomedicine, IEEE Transactions on, 12(2):205-217, 2008.

[5] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C. Kesselman, S. Meder, L.
Pearlman, and S. Tuecke, Security for Grid services, Proceedings of the 12th IEEE International
Symposium on High Performance Distributed Computing, 2003., 48-57.

[6] P. Louridas, Orchestrating Web Services with BPEL, IEEE Software, vol. 25, no. 2, pp. 85-87,
March/April, 2008

[7] D. Wegener, T. Sengstag, S. Sfakianakis, S. Ruping, and A. Assi, GridR: An R-Based Grid-Enabled Tool
for Data Analysis in ACGT Clinico-Genomics Trial,. Proceedings of the 3rd IEEE International
Conference on e-Science and Grid Computing (eScience 2007), Bangalore, India, 2007, pp. 228-235.

