Workflows for Intelligent Monitoring using
Proxy Services

Stefan RUPING?, Dennis WEGENER Stelios SFAKIANAKIS’
and Thierry SENGSTAG
#Fraunhofer IAIS, Schloss Birlinghoven, 53754 Sgustin, Germany
® Biomedical Informatics Laboratory, Institute of @puter Science FORTH, Greece
‘Swiss Institute of Bioinformatics, Batiment Génqull5 Lausanne, Switzerland

Abstract. Grid technologies have proven to be very succkssfihe area of
eScience, and in particular in healthcare appbaati where they allow combining
flexible, high-speed data processing with esseméiquirements of data security
and privacy. While the applicability of workflow aating tools for biomedical
research has long since been proven, the practitaition into regular clinical
research has some additional challenges. In thisrpave investigate the case of
data monitoring, and how to seamlessly implemeatstep between a one-time
proof-of-concept workflow and high-performance arel monitoring of data
streams, as exemplified by the case of long-runoiimical trials. We will present
an approach based on proxy services that allowsuéirg single-run workflows
repeatedly with little overhead.

Keywords. Grid, Workflow, Monitoring, Proxy Services

1. Introduction

Grid technologies [1] have proven to be very susftgsn the area of eScience where
they allow to combine flexible, high-speed and éawgplume data processing with

essential practical considerations such as cragmamational security and access
control, resource management and load balancifimgpior data security and privacy.

In particular the latter is of essential importantéhe field of healthcare in general and
clinical trials in particular, which we will inveigiate in this paper. Several legal and
ethical requirements and guidelines exist whichehtoy be taken into account in the
setup of an eHealth Grid system [2].

The applicability of workflow enacting tools for dimedical research has long
since been proven [3]. However, the practical aidopinto regular clinical research
has some additional challenges. In this paper,nwestigate the case of long-running
clinical trials and how to seamlessly implement step between a one-time proof-of-
concept workflow and high-performance on-line monitg of data streams

A clinical trial is a formal research procedurevimich a novel treatment (or
therapeutic procedure) is compared to an existegtent to assess its efficiency. The
guestions addressed by the trial can be relatéduig toxicity, severity of side effects,
improvement of patient survival, etc. As part af thal planning, a statistical design is

Corresponding Author (stefan.rueping@iais.fradehde).

thus setup, in which the number of patients exgedteeach alternative treatment
branch is defined, based on the anticipated diffezdn treatment outcome. After the
beginning of the trial, patients are gradually édetband a continuous monitoring of
treatment outcome is performed. The trial is stoppehe following cases:

1. Enough data has been collected to satisfactorilgwan the scientific

questions as specified in the definition of thaltri

2. Convincing evidence exists that one of the altéveattreatments is

significantly worse than the alternative. This n&ther be the case because
the new treatment exhibits some severe side effectbecause it has been
proven to be significantly more effective than thésting alternatives. In this
case, it would be unethical to treat any more p#disvith the less effective
alternative, and the trial has to be closed.

While the first case is straight-forward to implemh&vith current tools, because it
only requires a one-time data analysis after tha dallection phase has been finished,
the second case actually requires an event-drigatintious monitoring of the data of
all patients in the trial. When we consider theecaan end-to-end system, new data
may arrive at any time, driven by the researchevslved in the trial may introduce a
severe delay in recognizing safety hazards to #ieemts, possibly violating ethical
requirements. Instead, some kind of automatic aleil be necessary. The straight-
forward solution to this problem would be to repelly execute the data analysis
workflow in short time intervals. However, consithgr the potential of an online
integration of clinical trials with electronic h&fatare records (i.e. faster access to
higher volumes of data per patient), and the faat &n organization typically executes
multiple trials in parallel (with numbers expectedincrease with the availability of
integrated clinical trial systems), it is cleartthias solution does not scale well enough
to be practical.

The work in this paper is based on the AC@ioject [4], which has the goal of
implementing a secure, semantically enhanced emaidosystem in support of large
multi-centric clinico-genomic trials, meaning thiaistrives to integrate all steps from
the collection and management of various kindsatfdn a trial up to the statistical
analysis by the researcher. From the technologicamt of view, ACGT offers a
modular environment in which new data processing) @ata mining services can be
integrated as plug-ins as they become availablé€sR@lso provides a framework for
semantic integration of data sources (e.g., cliniizaabases) and data mining tools,
through the use of a specifically developed ontplagd of a semantic mediator. In the
current version, the various elements of the datang environment can be integrated
into complex analysis pipelines through the ACGTrkflow editor and enactor.

In this paper, we will present an approach basedwmoalled proxy services that
allows to easily convert single-run workflows intiata monitoring tools with little
overhead. The remainder of the paper is structaseébllows: first, we will give an
introduction to proxy services in general, before describe how to use them to
convert regular workflows into monitoring servicés experimental evaluation on a
real-world biomedical data analysis workflow follswWe close the paper with some
outlook into future work.

2 http://eu-acgt.org

2. Proxy Services

In ACGT a generic data protection framework hasmbdefined which is based on
a technical security infrastructure as well as gyanizational measures and contractual
obligations [1]. The definition of such a framewonkas required so that sensitive
patient data are managed in a secure, authorizetl,aadited way. Most of these
security requirements are dealt with the Grid istfiracture layer. In particular the Grid
Security Infrastructure (GSI) [5] supports usethautication through digital signatures
and also the delegation of user privileges to @icerso that this service performs an
action on the user's behalf and without the usertervention. The delegation
mechanism is important because it allows “singh@ €in” for the users of the Grid.

On the other end of the spectrum we have chosenLB&Ethe underlying
workflow technology, which is the de facto standémdweb Services orchestration and
business process modeling [6]. Nevertheless theicehof BPEL requires an
infrastructure that would make possible the invioeatof the ACGT secure grid
services from inside the BPEL-based workflows. E&lly the use of GSI for securing
Web Services requires a BPEL Engine (“enactor”} thable to invoke them without
compromising security. In particular, each BPEL kflmw should also be a GSI
secured service that is able to accept the deleégater credentials and subsequently
delegate them further to all the services that nedusk contacted in the context of the
specific workflow. Unfortunately BPEL and the Weler@ices standard security
specifications do not deal with such requiremenkhis problem required the
introduction of “Proxy” services that offer the dge between the business process
view of BPEL engines and the Grid secure servi¢eéseoACGT ecosystem.

The architecture of the proxy services mechanismejgicted in Figure 1. Each

Certificate |

Certificate
Id

N\

Certificate
Repository.

Certificate

I.egenﬂ
G5l Secured communication
WS (WS-) communication

Figure 1. WorkflowEnactment Environment.

Se-vice Id -
Input E—u a TR L

Input 2 -

rAcqdf o ifa S 0630 drs I L babid s
Figure 2. The generation of a unique signature of the intiongarameters.

“real" ACGT service is mirrored by a correspondityoxy service". The proxy

service has the same programmatic interface wiéh dhiginal service and, in its
implementation, forwards all requests to the serti@t it mirrors. The most important
difference between the proxy service and the tasgstice is that the proxy service is
not contacted through GSI but through “standard’bV8ervices technologies.

The introduction of the proxies is to make the BRiflgine agnostic of the whole
GRID security framework. In order to achieve thise BPEL workflows that are
deployed in the enactor do not contain the invocatf the original ACGT services
but the invocation of the corresponding proxy segsiin their places. The proxy
services should be able to make GSl-secured invosatto their real parties and
therefore they need access to the user's cerdfitiat originated the workflow
execution. To do that the user's credentials arergepted” in a service just before the
enactor that we call "enactor proxy". The enactarxp accepts the request for the
execution of the workflow as if it was the real etms, extracts the security
information, creates a new proxy certificate witdedjation, and stores this certificate
in a certificate repository under a newly createddctment” ID. It subsequently makes
the normal call to the real enactor passing, initeod to the workflow input
parameters, the ID of the certificate.

The final piece to make the whole thing work is BRREL workflows: they are
constructed in such a way so that the enactmetidDreferences the certificate in the
database is passed as an additional parameted thealproxy services contacted
throughout the execution of the workflow. The proarvices use this ID to retrieve
the stored user credentials and make GSl-secuvedation to the real ACGT service.

In order to support the repeated execution of wowks in an efficient way it is
necessary to take advantage of the results of gastutions. This is a well known
programming technique termed “memoization”, in femse that the previous results
are “remembered” and reused, wherever this is plesdo make future executions go
faster. In our case the repeated executions olvtr&flows that are monitored can be
speeded up if many of the participating data preiogssteps need not be performed
because their inputs have not be changed. Themesteong requirement in order for
this optimization to take place though: these pseirgy steps should be deterministic or
“referentially transparent”, which means that foe tsame set of inputs they always
yield the same outputs. Even if it appears to bang requirement, a lot of analytical
and processing activities are indeed of this ki@dunterexamples include external
databases that may be updated independently.

In order for the proxies to work in a workflow mtoring scenario they need first
of all to be aware if the target service is detaistic. This is part of the target
service's metadata and therefore it is readily labée by the ACGT service registry
when given the specific service id. The secondirement is that the proxy services
need to be aware if they are called in the coraéatworkflow monitoring task. This is

implemented through the incorporation of a “moniigrcontext” in the information

that is available through the enactment ID thay thecept in all of their requests. A
final requirement is for the proxy services to etam this “monitoring context” past
results of their invocation along with the corresgimg input values.

A final important note to make is how inputs theg aupplied by reference should
be handled. An example of such a case is whenpn parameter is id of a file stored
in the Grid data management service (DMS). In gansubsequent invocations with
the same input reference cannot be handled asiagdbebecause the contents of the
referenced entity may have changed in betweerhisncase some “deep” checking of
inputs equality should be performed such that #msibn is not based on the reference
but on the value (e.g. file contents) that is refieed. Nevertheless, in the case of the
Grid DMS and its use in the context of the ACGTuady of the file references means
equivalent contents because files are not updated:files, and therefore file ids, are
created instead.

Storing the complete input values can result irulastantial cache size for large
inputs. A possible alternative is the use pfessage digesalgorithms that accept an
arbitrary size of data and perform a hash functionproduce a small string of
characters (the “hash value” or “fingerprint”) ofieir input. Examples of these
algorithms are the MD5, and the newer SHA familyhafsh functions. The most
important feature of these algorithms is that gxsremely rare for two different inputs
to have the same output digest, meaning that afisgmt reduction in cache size is
traded against an extremely small chance of cacbingrs. Furthermore in order to
deal with the situation that the same data have peecessed using different grid file
references, the proxy service implementation, afteery invocation of the target
service, “de-references” the parameters, i.e. doads the files, to compute the hash
value of the data themselves that it then incoesran the XML document to produce
the final hash value. This double hashing procestown in Figure 2 above, where the
“Input 1” is a file identifier. In conclusion, passults are cached and indexed both by
the hash value produced by the given input paramelees and the hash value of the
contents of the files referenced if such refergramameters exist.

3. Workflowsfor Intelligent Monitoring

Using the caching functionality as implemented bg fproxy services, it is
possible to implement a monitoring tool and conwandalone workflows into data
monitoring services. The basic idea is that as th@wrepeated execution of a workflow
on identical or similar data has very low overhead,can easily repeatedly execute the
workflow and check for user-specified conditions detail, the setup and execution of
a monitoring task goes as follows:

1. The user sets up a workflow and registers it fontesing. He identifies a
Boolean output of the workflow as the notificationtput and one Boolean
output as the termination output

2. A caching context is set up for the monitoring witok

3. The workflow is executed by the enactor in the @aglcontext. Note that
caching does not apply for non-deterministic sawic As data access
operators are non-deterministic, this triggers ergdor new or updated data.

4. If the value notification output is true, the ugealerted of new results

5. If the value of the termination output is true, thenitoring task is stopped,
else the algorithm is repeated from step 3, pogsifer a pre-determined
waiting period.

The requirement of Boolean notification and terrtiora output in Step 1 allows the
implementation of more complex criteria with theol® provided by the workflow
language. For the sake of usability, however, il straightforward to implement
more complex stopping criteria for other types wifpoit directly in the monitoring tool.
Note that in Step 3 there is some optimization ptiaé if the data access operators
support a notification mechanism when new datavilable, or allows querying the
last update time of the underlying database.

A possible drawback of this implementation is theessive use of caching.
However, an additional advantage of the proxy sewiis that they easily allow
detailed logging of service statistics. In partaoulthe total execution time of the proxy
services, the execution time of the underlying iservthe caching overhead, and the
average number of calls in a given time period lmamecorded. With this information,
it is easily possible (1) to check if caching ifeefive caching overhead < execution
time of underlying servigeand (2) to estimate the total reduction of exiecutime for
each service(éxecution time of underlying service — cachingriogad) * number of
calls). Should the size of the cache exceed a pre-detedhthreshold, caching can be
de-activated for services with the least total mtidm of execution time.

4. Experiments

In order to illustrate the gain in efficiency inimg caching, a scenario based on
simulated clinical trial has been used. In thisnse®, two research centers are
enrolling patients in a clinical trial on breasnhcar (hereafter called the Multi-Center
Multi-Platform or MCMP scenario). Both centers whfferent microarray platforms to
assess genome-wide gene expression in biopsiea fak the patients. A single
microarray is used for each biopsy, which yieldstopmillions of individual gene-
expression measurements. In order to compare gemession measurements for
biopsies obtained on a given microarray platformgdada-normalization procedure
involving many (usually all) measurements that wemade with this platform is
required. Thus each time a new patient is enrdlethe study, the computationally
costly normalization procedure has to be repeated.

Now, in the scenario two platforms are used. Theegexpression measured for a
biopsy collected in one of the centers will not inegolved in the normalization
procedure for the data collected in the other ¢emthich can thus be avoided.

Figure 3 shows a possible implementation of a wovkfwhich would be typical
of such a monitoring procedure. Data are flowingnfrtop to bottom, with files as
inputs and each horizontal block in the figure esenting a GridR service [7]. The
workflow has vertical symmetry, with the left hatforresponding to the data
preprocessing for one microarray platform (one asge center) and the right one for
the other. The left-most and right-most input bloek the top represent the microarray
data. (The upper-center blocks are related to ricay annotation and are not relevant
in the present scope.)

Microarray data collected in both centers are cowbiwith the clinical data
collected from the patient (age, gender, etc.)ha trial monitoring block of the
workflow (bottommost block in Figure 3). Thus whamew patient is recruited in the

Research Center 1 Research Center 2
Genomic database

Microarray
annotation

Microarray
annotation

Microarray
database

Affymetrix
normalization

icroarray
database

Affymetrix
annot. filter

llumina gene
selection

Affy. gene
selection

Combined
analysis

Figure 3. Possible workflow for continuous monitoring of ttlenical data collected in the MCMP scenario.
The red circles indicate the data inputs that #iecied by the recruitment of a new patient in ofieche
research centers. The workflow components markéd avred square are those for which a new execution
is required. See text for more details.
trial, two inputs of the workflow are affected: ome either of the microarray-data
related branch, and one corresponding to the eliniata. An example of patient
recruitment is represented by red circles on tigeiré. The workflow component
requiring an update in this case are marked byseegres, the intermediate output of
all other components being unaffected by the neta.da

For the practical application of the concept désaiihere, two microarray datasets
representing 73 patients each have been usedtheittorresponding clinical data. The
microarray platform were Affymetrix HG-U133A withbaut 500’000 features, and
lllumina, with about 23’000 genes measured (sunmiagi about 600’000 array
features). The microarray-annotation related bladestify which array features are
truly representing known genes, based on the lajese-sequence annotation. The
feature-filtering blocks identify which array feads are the most informative for a
given genes. Finally the trial monitoring block esses the significance of a gene-
expression-based sample classifier.

In order to show up the possible performance impnoents with caching, we
evaluated the runtimes of the services in the viovkEhown in Figure 6 in the ACGT
system. For practical reasons, the underlying dad had to be replaced by file
inputs. However, as these data sources are nongeistic, their execution time is
identical in both a caching and non-caching sceramyway.

With respect to caching, the important propertiethe workflow are that the left
part (Affymetrix) and right part (Illumina) can run parallel. Each of the parts consists
of two steps, where the gene selection can only staormalization and annotation
filtering is finished. The bottom part (combinedabysis) can start when both gene

selection steps are done. In addition, all servidebe workflow except the data access
services are deterministic.

With respect to the ACGT system it is importanhaiice that the services receive
large inputs and outputs as references to fileeedtin the Grid Data Management
System (DMS). The DMS guarantees that the conte#rdasfile cannot be changed after
being written, such that identical identifiers qartee identical content (but not the
other way round). As discussed in Section 2, oihgslementations may require
different ways of efficiently checking the identitf inputs. However this does not
affect the validity of the overall caching approach

In consequence, checking the identity of the cantéfiiles in the ACGT system
works in two phases: If the identifier of the capending file was cached, the input is
identical (reference check). If not, the file mbstdownloaded and its content must be
compared to the cached file (download check).dfdhntent of all inputs is identical to
the values in the cache, we have a cache hit amdlicectly return the cached output
value without calling the actual service. If ndtgtservice needs to be called and the
cache is updated.

For the comparison of the references we have aansme of 1s for the check.
For the downloading and hash value comparison wenas a time of 2s plus the time
it takes to download the file. The caching is coteduwon a single machine where the
proxies are running. We assume that the time fchiog is serial time where the
caching checks cannot be computed in parallel.

The Affymetrix and the lllumina Microarray annotati files are candidates for
taking a reference directly from the cache, as ahfiles always have the same
identifier. The outputs of the queries to the datas are always stored in separate files
with different identifiers and thus have to be cangul each time.

Caching can save time in case an input can be faonthe cache and the
computation time for the check is less then thestittakes to run the service. But, of
course the caching causes overhead in case weaheaghe miss so that the check of
the cache as well as the service have to be cochpuiehe following, we distinguish
between 3 different scenarios:

1. Workflow execution without caching: The overall workflow had a total
runtime (wall clock time) of 39m19s while the sees run partially in
parallel. The serial runtime (CPU time) is 58m14s.

2. Workflow execution with caching on the same data: Assuming that none of
the data sources changed, the execution of theflmarlusing caching is as
follows. Depending on the specific workflow compahend their inputs,
caching by reference check or caching by downloatidirect comparison is
used. Once all inputs of a service come from theheathe service is not
executed and a reference cache file is directlg @seoutput. As the data does
not change, caching can be used for each serviee CPU time and the Wall
time, as the caching is computed sequentially pglsimachine, is 2m43s.

3. Workflow execution with caching on partially new data: In this case we
assume that a new patient’s data arrives in thenmlha database. In our
example, the data sources “clinical database” amicrbarray database”
change due to a new patient coming in. Thus, tbfd¢be services have to be
computed, for the others caching can be used. TalktiMe was 34m54s and
the CPU time 36m58s.

Table 1: Execution times of the workflow in thed@rcaching scenarios. As services can run in phraié
distinguish between CPU time (time spent on theutation) and Wall time (for the overall runtimejll
times given in the format mm:ss

No caching Same input Part diff input
Name CPU Wall CPU | Wall | CPU | Wall time
time time time | time | time

lllumina normalization 03:59 03:59 00:23 00:23 @B1:R04:23
Affymetrix annot. filter 03:31 03:59| 00:1F 00:40 :0@ | 04:23
Affymetrix normalization | 08:21 08:21] 01:26 02:06 :P8 | 04:23
lllumina annot. filter 03:31 08:21] 00:17 02:23 0D:1 04:23
Illumina gene selection 07:54 16:15 00:p2 02§25 208 12:43
Affy. Gene selection 09:25 17:46 00:02 02:27 00]022:43
Combined analysis 21:33 39:19 00:16 0243 22(11 584:
Sum: 58:14 39:19| 02:48 02:43 36:58 34:54

Table 1 gives an overview over our experimentstenworkflow execution. As
example for the time measurements, let us haveok tm Step “lllumina gene
selection”. In case we do not use caching, theisehas to be executed which takes a
time of 7m54s. If we execute the step with cachimg, the inputs did not change, we
have a time of 1s each for the reference checkeidft and right input. If the input
changed as explained, we still have a time of 1stHe reference check of the left
input, a time of 25s for the reference and downlola€ck (download 22s, service call
and check 2s) of the right input and a time of 7ent&4 the service execution.

We also compare the runtimes of each individualiserin 4 scenarios (see
Table 2). First using no caching at all, secondlibst case for caching (all inputs are
references), third the worst case while still hgvimache hits (all inputs have to be
downloaded) and fourth the worst case using cachimgh is having cache misses for
each input. Note that the computation time of #rwise depends on the specific input.

Table 2. Results of individual service executions. All tisrgven in the format mm:ss

No Cache hits | Cache hits | Cache miss
caching| (reference) | (download) | for all
for all inputs | for all inputs | inputs

Name time time time time
Illumina normalization 03:59 00:01 00:24 04:23
Affymetrix annot. filter 03:31 00:02 00:53 04:24
Affymetrix normalization | 08:21 00:01 01:28 09:49
Illumina annot. filter 03:31 00:02 00:34 04:05
Illumina gene selection 07:54 00:02 00:41 08:32
Affy. Gene selection 09:25 00:02 00:39 10:04
Combined analysis 21:33 00:03 00:54 22:27

By using caching users can profit from better t@@iformance or usage of less
resources for the computation of a workflow. Ashiag causes overhead, the overall
profit depends on the likelihood with which the inplata changes (and the frequency
of the workflow executions). It is obvious that fehort running services caching
performs worse, but for long running services iugeful. Our experiments show that
the parallelization of the service execution sagemputing time. In our example,
caching improves the performance even more. In taséata sources do not change,

the service execution is a lot faster then the abrexecution. In case some of the
services have to be executed, the overall computéitne was still a bit lower than the
normal execution, and the time spend on the CPUsmzch lower. Thus, depending
on the changing on the input data, caching can dmtthe efficiency of workflow
execution with respect to both computation time asdge of computing resources.
However, the caching works only for services getigaleterministic outputs.

5. Conclusions and Future Work

In this paper we presented the investigation on tmaeamlessly implement the step
between a one-time proof-of-concept workflow andghhperformance on-line
monitoring of data streams in the context of datenitoring. The use case of our study
was a long-running clinical trial. We introduced approach based on proxy services
that allows executing single-run workflows repeétedith little overhead.

A special case that is not considered in this papdor services that are non-
deterministic because they are random or are sutgjezventual numerical errors. For
these, it would be possible to introduce more cempsts in the proxy services, such
that a cache hit is already produced when the teeatd identical up to some tolerance
of error. However, these tests would be very mugeddent on the data types and the
numerical requirements of the workflow. Anothereirgsting point of research would
be to investigate a possible shared caching ofceof multiple workflows.

Acknowledgements

Christine Desmedt and collaborators at Instituesiordet, Bruxelles, and Francesca
Buffa and collaborators at University of Oxford bgwovided the clinical and research
data used in the MCMP scenario. Francesca Buffaiged useful advice in the
development of some of the workflow componentsaddition, the authors gratefully
acknowledge the financial support of the Europeammission for the Project ACGT,
FP6/2004/1ST-026996.

References

[1] I. Foster.The Grid: Computing without boundScientific American, 288(4):60-67, 2003.

[2] B. Claerhout, N. Forg6, T. Krugel, M. Arning, and Be Moor, A Data Protection Framework for
Transeuropean genetic research proje&sydies in health technology and informatics, 2008

[3] G.C. Fox and D. Gannon. Special Issue: WorkflowG@rid Systems: Editorials. Concurrency and
Computation: Practice & Experience, 18(10):1009912D06.

[4] M. Tsiknakis, M. Brochhausen, J. Nabrzyski, J. RlieS. Sfakianakis, G. Potamias, C. Desmedt, and
D. KafetzopoulosA Semantic Grid Infrastructure Enabling Integratédcess and Analysis of Multilevel
Biomedical Data in Support of Postgenomic Clinidalals on Cancer Information Technology in
Biomedicine, IEEE Transactions on, 12(2):205-21008

[5] V. Welch, F. Siebenlist, |. Foster, J. BresnahanCKajkowski, J. Gawor, C. Kesselman, S. Meder, L.
Pearlman, and S. Tueck&ecurity for Grid servicesProceedings of the 12th IEEE International
Symposium on High Performance Distributed Comput2@3., 48-57.

[6] P. Louridas,Orchestrating Web Services with BREIEEE Software, vol. 25, no. 2, pp. 85-87,
March/April, 2008

[7] D. Wegener, T. Sengstag, S. Sfakianakis, S. Rupimg) A. AssiGridR: An R-Based Grid-Enabled Tool
for Data Analysis in ACGT Clinico-Genomics TriaRroceedings of the 3rd IEEE International
Conference on e-Science and Grid Computing (eSei2f67), Bangalore, India, 2007, pp. 228-235.

