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Abstract

Next to prediction accuracy, interpretability
is one of the fundamental performance crite-
ria for machine learning. While high accu-
racy learners have intensively been explored,
interpretability still poses a difficult problem.
To combine accuracy and interpretability,
this paper introduces an framework which
combines an approximative model with a
severely restricted number of features with
a more complex high-accuracy model, where
the latter model is used only locally. Three
approaches to this learning problem, based
on classification, clustering, and the con-
ditional information bottleneck method are
compared.

1. Introduction

More and more data is collected in all kinds of applica-
tion domains and sizes of data sets available for knowl-
edge discovery increase steadily. On the one hand
this is good, because learning with high-dimensional
data and complex dependencies needs a large number
of examples to obtain accurate results. On the other
hand, there are several learning problems which can-
not be thoroughly solved by simply applying a stan-
dard learning algorithm. While the accuracy of the
learner typically increases with example size, other cri-
teria are negatively affected by too much examples, for
example interpretability, speed in learning and appli-
cation of a model, overhead for handling large amounts
of data and the ability to interactively let the user
work with the learning system (Giraud-Carrier, 1998).
This paper deals with the criterion of interpretability
of the learned model, which is an important, yet often
overlooked aspect for applying machine learning algo-
rithms to real-world tasks. The importance of inter-
pretability stems from the fact that knowledge discov-
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ery is not equal to the application of a learning algo-
rithm, but is an iterative and interactive process that
requires much manual work from data miners and do-
main specialists to understand the problem, transform
the data prior to learning and interpret and deploy the
model afterwards. One cannot hope to successfully
solve these problems without substantial insight into
the workings and results of the learning algorithm.

The rest of the paper is organized as follows: the next
section discusses the concept of interpretability, its re-
lation to multiple views, and introduces the basic ideas
of this paper. Section 3 gives an introduction to the in-
formation bottleneck method, which will be used later.
Section 4 describes the problem of learning local mod-
els and its connection to learning with multiple views,
while three approaches to the crucial step of detecting
local patterns are presented in Section 5. Following
that, Section 6 gives some empirical results and Sec-
tion 7 concludes.

2. Interpretability

The key problem with interpretability is that humans
are very limited in the level of complexity they can
intuitively understand. Psychological research has es-
tablished the fact that humans can simultaneously deal
with only about seven cognitive entities (Miller, 1956)
and are seriously limited in estimating the degree of re-
latedness of more than two variables (Jennings et al.,
1982). An optimal solution of a high-dimensional,
large-scale learning task, however, may lead to a very
large level of complexity in the optimal solution. In-
terpretability is very hard to formalize, as it is a sub-
jective concept. In this paper, we use four heuristics
to approach the concept of interpretability:

Number of features: the number of features used in a
model is a heuristic measure of complexity. While
this is not strictly true, as the user may under-
stand even a high number of features if he can
relate the feature values to an existing mental con-
cept (e. g., a doctor may explain a large number
of symptoms by one disease), this heuristic has



often been used in practice (Sommer, 1996).

User-defined hypothesis space: A very simple and yet
very important finding in practice is that people
tend to find those things understandable that they
already know. Hence, if a user has much experi-
ence with a specific learning algorithm, it may be
favorable to keep using this learner, regardless of
its accuracy.

Examples and features instead of models: While
models are often hard to understand even for ex-
perienced machine learning experts, single exam-
ples and single features have a clear meaning to
domain experts (e. g. instead of a TF/IDF repre-
sentation of text documents, one can look at the
texts themselves).

Split-up into sub-problems: Splitting up a problem
into several independent sub-problems reduces
the complexity and may still give reasonable re-
sults, even if the sub-problems are actually not
completely independent.

How can the interpretability problem be solved? Ex-
perience shows that one can often find a simple model
which provides not an optimal solution, but a reason-
ably good approximation. The hard work usually lies
in improving an already good model. Hence, we can
try to find a simple model first and then concentrate
on finding more sophisticated models only on those
parts of the input space, where the model is not good
enough. This will be an easier task because less exam-
ples have to be considered and hence one might use a
more sophisticated learner. To express the fact that
the latter models are only used for small parts of the
input space, these models will be called local models.
In contrast, the former, more general model will be
called the global model (Riiping, 2005).

Implicitly, this setup requires a description of the parts
of the input space where the global model is not good
enough or a decision rule when to use the global model
or the local models. These regions will be called local
patterns (Hand, 2002) and we will require the descrip-
tion of the local patterns to be interpretable in the
same sense as the global model. The idea, as depicted
in Figure 1, is the following: to classify an observation
with high accuracy, we see whether it falls into one of
the local patterns. In this case, the corresponding lo-
cal model is used, else the global model is used. When
we are more interested in interpretability, it suffices
to inspect only the global model, which is an approx-
imation of the complete model, plus the local pattern
which characterizes the deviations between the global
and the complete model.

Figure 1. The local model idea. Left: with respect to in-
terpretability, only the global model (horizontal line) is re-
garded, while the local pattern (rectangle) specifies the re-
gion where the global model is not reliable. Right: with re-
spect to accuracy, the pattern specifies when to use the lo-
cal model (nonlinear function) instead of the global model.

The local patterns distinguish this approach from both
ensemble methods and from independently learning
an understandable and a high-performance model. In
usual ensemble methods, even in the case of easily
interpretable base learners the combination of sev-
eral learners will add a large amount of complexity,
whereas using local patterns the model will be kept
simple for a large and well-defined part of the input
space. In contrast to two independently learned mod-
els, the local pattern assures that there is a strict, well-
defined correspondence between the two models. The
philosophy behind this approach is that accuracy and
interpretability are two aspects of the same problem
and that their solutions should be as independent as
necessary, but as close as possible.

This approach reduces complexity in two ways. First,
a less than optimal hypothesis language can be used for
the global model, because errors can still be corrected
by the local models. This leaves room for choosing a
hypothesis language that optimizes criteria other than
the prediction error, namely the interpretability of the
global model. Second, for the aspect of discovering
new knowledge, it may happen that the global model
finds only the obvious patterns in the data that do-
main experts are already aware of. Patterns are more
informative, if they contradict what is already known
(Guyon et al., 1996). Hence, it may in fact be the case
that the local models contain the interesting cases.

Of course, there is also a downside to this approach:
The complete model, consisting of three sub-models,
may easily be much more complex than a single model
designed to optimize accuracy. However, it should be
noticed that only the global model and the local pat-
terns are meant to be understandable and that a lower
complexity of a competing model yields no improve-
ment if it is still too complex for the user to under-
stand.



In this paper, the interpretability framework consists
of restricting the number of features that both the
learner and the description of the error regions of the
learner may use. This can be seen as constructing two
new views on the data: one to define the global model
on, and one to discriminate between the global and the
local models.

3. Information Bottleneck

The information bottleneck method (Tishby et al.,
1999) extracts structure from the data by viewing
structure extraction as data compression while con-
serving relevant information. With the data modeled
by a random variable U!, relevant information is ex-
plicitely modeled by a second random variable V', such
that there is no need to implicitly model the relevant
structure in terms of appropriately choosing distance
or similarity measures as in standard clustering algo-
rithm. The idea is to construct a probabilistic clus-
tering, given by a random variable C, such that the
mutual information I(U, C') between the data and the
clusters is minimized, i. e. C' compresses the data as
much as possible, while at the same time the mutual
information I(V, C') of the relevant variable V and the
clusters is maximized, i. e. the relevant structure is
conserved. Hence, the random variable C' acts as a
bottleneck for the information U has about V. Both
goals are balanced against each other by a real pa-
rameter § > 0, such that the goal becomes to find a
clustering P(c|u) which minimizes

F=1(U,C) - BI(V,C).

It can be shown that this problem can be solved by
iterating between the following three equations

P(e) = ZP P(clu)
P(vle) = }:P@mﬂ%m@
P(c|u) o Pu(c>eBP(v\u)logP(v\c)_

The first two equations ensure the consistency of the
estimate probabilities, while the third equation gives
a functional form of the clustering, depending on the
Kullback-Leibler-distance between P(v|u) and P(v]|c)
(removing factors independent of ¢). The input con-
sists of the probability distributions P(u) and P(v|u).

We use the letters U, V, W instead of the usual X,Y, Z
in order to avoid confusion with the classification features
X and labels Y used later

3.1. Condition Information Bottleneck

Gondek and Hoffmann (Gondek & Hofmann, 2004)
extend the information bottleneck approach by con-
sidering not only information about relevant, but also
about irrelevant structure. It is often easier to express
what is already known and hence is uninteresting, than
to specify what is interesting and relevant. Examples
of such irrelevant structures are general categorization
schemes and well-known properties of the data, when
instead one is interested in how the data differs from
what one thinks it looks like.

Conditional information bottleneck (CIB) is formu-
lated by introducing a random variable W to describe
the irrelevant information. The learning problem cor-
responds to that of standard information bottleneck
with the new target function

F=1(U,C) — BI(V,C|W)

That is, one wants to maximize the information that
C has of V, given that W is already known. In a way,
the goal is to extract information orthogonal to what
one can already infer via W.

Again, the problem can be solved by iterating between
three estimation equations

P(c) = ZP P(clu)
( |’LU,C) = ZP |’LL ’LU u|w C)
P(clu) P(C)eﬁ Zw P(w|u) Zy P(v|u,w) log P(v|w,c)

The probabilities P(v|u, w), P(w|u) and P(u) have to
be given to the learner as input.

4. Local Models and Multiple Views

Local pattern or subgroup detection (Hand, 2002) is
defined as the un-supervised detection of high-density
regions in the data. That is, one looks for regions in
the input space, whose empirical probability with re-
spect to a given a training set is significantly higher
than the probability assigned by a default probabil-
ity measure, which encodes the prior beliefs about the
data. The idea is that the user already has some idea
of what his data looks like and is interested in cases
where his beliefs are wrong.

Local models are an extension of local patterns to the
supervised case. Local models are meant to improve
the prediction, hence instead of P(z) the interesting
quantity is the conditional class probability P(y|x).



We will deal with classification rules only here. Given
a global classifier f(z), the goal is to find regions of the
input space where f(x) is wrong, plus a new, better
classification rule on these regions. To justify the term
local the error regions are restricted to have a proba-
bility below a user-defined threshold 7, such that most
of the data will be predicted by the global model.

In order to improve interpretability with local mod-
els, we want both the global classifier and the descrip-
tion of the local regions to be interpretable. As dis-
cussed in Section 2, this implies that the user may
choose any learner that he deems to be appropriate.
Treating the learner as a black box, we improve under-
standability only by restricting the number of features
for the global classifier and the local pattern detec-
tion can use. In other words, we construct a specific
view for the global classifier which is optimized for in-
terpretability of the overall model and a second view
for the local patterns, which is optimized for describ-
ing the incorrectly predicted examples of the global
model. Finally, the local classifier is not restricted in
which features to use, as it is not meant to be under-
standable, but only to increase accuracy.

4.1. Optimizing the Global and Local Models

Selecting a subset of features for the global model is
a well investigated problem and can be solved in a
general way for example using the wrapper approach
(Kohavi & John, 1998). This approach is computer
intensive, but can be used for any learner.

The local learner is not restricted by any interpretabil-
ity considerations at all and we may select the learner
which gives the best accuracy. The definition of the
local models asks only for the local model to be de-
fined on its corresponding local pattern. Hence, we
may use different learners for each pattern, which may
be a good idea when there are different reasons that
the data deviates from the global model. This means
that the detection of local patterns and the construc-
tion of models depend on each other and that it may
be a good idea to construct them in parallel or let them
iteratively improve each other (Riiping, 2005).

However, as in the following we are mainly concerned
with the problem of finding adequate local patterns,
we simplify things by using only one local model on all
local patterns. This model will be learned on all avail-
able examples (that is, it is actually a global model),
but will be used only on the detected local patterns.
This model is expected to perform better than the ac-
tual global model because it is not restricted by inter-
pretability constraints.

5. Detecting Local Patterns

Given the global and local models, the goal of local
pattern detection in this case is to find a description
of the regions in the input space where the local model
is better than the global one. Examples lying in these
regions will be called local examples here. The goal
of local pattern detection here is to optimize the com-
bined learners accuracy while keeping the restriction
of interpretability (hypothesis language and number of
features) and locality (only a fraction of 7 examples in
the local patterns).

5.1. Local Patterns as a Classification Task

It is straightforward to define local pattern detection
as a classification task: given the examples (z;,y;)"
and the global and local learners predictions, define the
new label [; as 1 when (z;, y;) is a local example (mean-
ing that the global learner predicts (z;,y;) wrong and
the local learner is right). Set I; = —1 otherwise. Then
learn a classifier using the new labels. This classifier
will predict whether the local model should be used on
an example instead of the global one.

When the global and local learner agree, it obviously
does not matter which prediction one uses. However,
this does not mean that these examples can be re-
moved from the local pattern learners training set. As
the locality restriction requires that only a fraction of
7 examples may lie in the local patterns, it is advis-
able to include only the local examples in the positive
class, where the combined model can be improved by
the local model. If the locality restriction is still not
met, one will have to reduce the number positive pre-
dictions of the local pattern learner even more, e.g. by
selecting a proper threshold for learners with a numer-
ical decision function.

For the decision, which classifier to use for the local
pattern task, the same interpretability considerations
as for the global model apply. In fact, as may be ad-
visable to use the same learner for both tasks. Letting
the learner choose different sets of features and a dif-
ferent hypothesis in both tasks may provide enough
variation to significantly improve the results.

5.2. Clustering Local Examples

Although in the strict sense detecting local patterns
is a classification task in the framework of local mod-
els, it can also be solved by a clustering approach. The
reason is, that the classification task is actually a quite
relaxed one: given that the local model is more accu-
rate than the global one and as long as the locality
restriction is fulfilled, it is no problem to include more



examples in the local pattern than necessary. Hence,
in this case the performance criterion for the classifica-
tion is biased very much towards completely covering
the positive class (recall) with less emphasis on the
negative class.

This task may be solved by clustering the local ex-
amples using a density-based clusterer and choosing
a threshold on the density to define the regions with
highest probability of finding a local example. It is
straightforward to optimize these thresholds such that
the accuracy of the combined model is maximized.

A clustering approach may be better suited as a clas-
sification approach, as clustering not only tries to de-
scribe the differences between the local and the non-
local examples, but actually tries to find a compact
representation of the local examples. This description
may give the user a clue why these examples are more
complex to classify and may lead to an improved rep-
resentation of the data.

One can also account for the probabilistic nature of
the division of the examples into local and non-local
examples. Assume that the training data (x;,vy;)i=1...n
is i. i. d. sampled from P,.;,(X x Y)2. We start by
learning a probabilistic classifier f, that is, a classi-
fier whose outputs can be interpreted as the condi-
tional class probability f(z) = P,ie(Y = 1]x). Many
classifiers either directly give such a probability or
give outputs which can be appropriately scaled (Gar-
czarek, 2002; Platt, 1999). We assume that this is the
true distribution of positive and negative classes given
the observation z and thus arrive at an estimate of
Porig(Y # f(x)|z). Assuming P,.;4(z) = 1/n for all =
in the training set gives an estimate of

PE) = Foulel¥ #1000 = B T

the probability of drawing an falsely classified observa-
tion. When generating a cluster model, this probabil-
ity can be used as a weight on how much each example
will have to be represented by the cluster.

To enforce the restriction on the number of features
used for the model, one can either use a clustering
algorithm that incorporates feature reduction by se-
lecting a subset of features that maximizes the density
of the projection in this subspace (projected cluster-
ing, (Aggarwal et al., 1999)), or by selecting features
after the clustering process, for example based on the
mutual information I(z,c) of the features z and the
cluster membership values c.

2In the following, the index orig is also used to identify
the marginal distributions derived from Poriqg

5.3. Informed Clustering for Local Patterns

Informed clustering describes the setting where the de-
sired structure to be extracted by a clustering is not
only defined implicitly using the distance or similarity
function, but also explicit information about relevant
and irrelevant structure is given. The conditional in-
formation bottleneck algorithm is one such approach,
where one can explicitely define irrelevant structure
which the clustering algorithm should ignore.

There are two kinds of irrelevant information one could
exploit. First, one can use a probabilistic clustering
p(c|x) of the complete training observations (x;);=1.. n-
This clustering shows, what the data generally looks
like and can be used as a background model to dis-
criminate the local examples against. Note that we
do not require an information bottleneck clustering at
this stage, we could also use any other probabilistic
clusterer. It would also be possible to use an exist-
ing description of the data set at this stage (e. g. an
ontology given by the user).

The other method is to define the prediction of the
global model or, more precisely the conditional class
probability P,;q(Y = 1|z) as irrelevant. The idea here
is that the global model is used anyway and that it is
better to look for independent sources of information.

In either case, one can arrives at a well-defined prob-
ability P.;(w|u). Now one can set up the conditional
information bottleneck problem to find the local pat-
terns as follows: identify U with the index ¢ and the
relevant features V' with the classification features X:

o Pip(u) = P(;) = Porig(w:i|Y # f(xi))
o Vw : P (v|u, w) = Py (v]u)

In other words, the problem is to compute a proba-
bilistic clustering P(c|u) = P(c|x;) of the observations
x; which are misclassified by the classifier f (controlled
by Peiv(u) = Porig(x;|Y # f(2:))), such that the clus-
tering describes how the local examples differ from the
complete data set (via defining the cluster information
Py (v]u) of the complete data set as irrelevant) or how
the local examples differ from structure from the global
model (via P,;q(Y = 1|z)).

As the information bottleneck method does not re-
turn a cluster model, but only the cluster member-
ship probabilities p(c|z), a model that induces these
memberships has to be found in order to apply the
clustering to new observations. Following the goal of
interpretability, it is advantageous to use a k-medoids
clustering model, as it is often easier to interpret sin-
gle examples than models. For each cluster, we choose



that example as medoid, which — in the space of pro-
jections on the most relevant features — minimizes the
expected distance of the medoid to the examples in
the cluster, where expectation is taken with respect to
the probability P.;(z, c) for the cluster c.

6. Experiments

In this section, we report results for both an instructive
application for classifying music data, which we report
in depth, and for a set of standard data sets in order
to compare the different local pattern approaches.

6.1. Music Data

In these experiments, a linear Support Vector Machine
(Vapnik, 1998) was used as both global and local clas-
sifier. Feature selection for the global classifier was
performed by repeatedly removing the features with
lowest absolute weight in the decision function. The
SVM decision functions were probabilistically scaled
using the method of (Platt, 1999). The pattern detec-
tion based on the CIB method (see Section 5.3) was
used, where the initial clustering was obtained by stan-
dard information bottleneck and a k-medoids model of
the CIB membership values was generated with the co-
sine similarity measure.

The data set in this experiment consists of 1885 audio
files of songs from 8 music genres, combined with user
reviews of each of the song as plain text. The classifi-
cation target was to predict the music taste of a user.
From the music files, 50 audio features were gener-
ated following the methodology of (Mierswa & Morik,
2005). The text information was represented as fre-
quencies of the 500 most frequent words. The global
classifier was learned from the text data only, as it is
easy for users to interpret single keywords, while audio
features are hard to understand even for experienced
experts. The local classifier was learned on the union
of the audio and text features. Notice that in this ap-
plication we have four different views on the data: the
keywords from the classification, the keywords from
the clustering, the union of the audio and text features
for the local classifier and finally the actual songs from
the audio files, which the user can actually listen to.

The initial information bottleneck clustering was pa-
rameterized to return 8 cluster, in correspondence with
the 8 music genres, and its parameter 5 was set to max-
imize the correspondence to the genres. However, the
most informative words regarding the clustering were
HELLO, POWER, BLEND, SOUNDS, BABY, FAT, QUIET,
BIT, NIGHT, and GIVE, which do not seem to reveal
any obvious genre structure.

Feature selection for classification returned GROOVE,
SMOOTH, CHILL, JAZZY, MOOD, FUSION, PIANO,
PIECE, PAUL, and JAZZ as the most important fea-
tures. It is obvious that a certain music taste can be
associated with these keywords

The CIB clustering returned TALENT, BABY, SOUNDS,
CHECK, NEAT, PASS, TRUE, NICE, SEXY, and CHORUS
as the most important features. Interestingly, extract-
ing two medoids from this clustering showed that the
first medoid consists only of the word CHORUS with
no occurrence of the other keywords and the second
medoid consists of the words SOUNDS and NICE with
no occurrence of the other keywords. This is a result
of the sparse structure of the text data, as a medoid
as any other example will have only a few nonzero fea-
tures. For sparse data it may be instructive to try out a
different procedure to describe the CIB clusters. How-
ever, the second medoid with the keywords “sounds
nice” seems to indicate that there are two aspects to
musical taste in this data set, the genre — which the
initial clustering was optimized against — (the classifier
indicates that the user seems to like jazz) — and the
quality of the music independent of the style (whether
the song sounds nice or not).

5-fold cross-validation showed an accuracy of the
global model of 0.624 (¢ = 0.0284), while the local
model achieved an accuracy of 0.670 (o = 0.0164) mea-
sured over all examples. The combined model achieves
an accuracy of 0.649 (o = 0.0230). This lies between
the accuracies of the global and the local model, which
was expected, as the amount of examples that the
global and the combined differ on is bounded by the
parameter 7 (in this experiment, 7 = 0.05), which
stops the local model from correcting more errors of
the global model.

To validate that the increase in performance is indeed
a result of the conditional information bottleneck ap-
proach, the experiment was repeated with a standard
information bottleneck clustering of the global models
errors instead of the CIB step (all other parameters
left constant). With the same accuracies for the global
and local classifiers, the accuracy of the combined clas-
sifier dropped to 0.627 (¢ = 0.0329). This proves that
the conditional information bottleneck clustering finds
novel structure in the errors of the global classifier.

To validate the effect of the parameter 7 and the num-
ber of features for the CIB clustering, more experi-
ments were conducted. The result can be seen in Ta-
ble 1. The table shows the accuracies of the global,
local and combined models and the disagreement rate
(fraction of examples classified differently) between the
global and the combined model. We can see that the



Table 1. Influence of the parameters on the performance.

PARAMETERS ACCURACY DISAGREE

T  F#FEATURES | GLOBAL LOCAL COMBINED
0.05 10 0.624  0.670 0.648 0.147
0.05 20 0.624  0.670 0.653 0.201
0.025 10 0.646  0.670 0.642 0.070
0.025 20 0.646  0.670 0.646 0.019

combined model performs better when more features
for the CIB clustering are present. We also see that
the actual disagreement rate is higher than the given
threshold 7. This is again a result of the sparse na-
ture of the data, as in the space projected on the most
important keywords, several different examples fall to-
gether, which prevents a more fine grained control of
the number of local examples. An obvious tradeoff be-
tween interpretability in terms of number of features
and accuracy can be observed here.

6.2. Standard Data Sets

To compare the local pattern approaches, the classifi-
cation approach using a linear SVM, the clustering ap-
proach using an information bottleneck clusterer, and
the informed clustering approach using conditional in-
formation bottleneck with the global classifiers con-
ditional class probability estimate as irrelevant infor-
mation were compared on a total of 8 data sets. 6
of the data sets (diabetes, digits, liver, balance, wine
and breast-cancer) were taken from the UCI repository
of machine learning databases (Murphy & Aha, 1994),
and 2 additional real world data sets involving business
cycle prediction (business) and intensive care patient
monitoring (medicine) were used. The following table
sums up the description of the data sets:

Name Size Dimension
balance 576 4
breast 683 9
diabetes 768 8
digits 776 64
liver 345 6
wine 178 13
business 157 13
medicine 6610 18

In these experiments, a linear Support Vector Machine
(Vapnik, 1998) was used as both global and local clas-
sifier. Feature selection for the global classifier was
performed by repeatedly removing the features with
lowest absolute weight from the decision function un-
til only 10% of the features were left.

Table 2 shows the experiments results, namely the ac-
curacy of the global model, the local model (viewed as
a complex global classifier and evaluated on the com-
plete data set) and the combined models using clas-
sification, clustering and informed clustering for the
local patterns. All results were 5-fold cross-validated.
The performance of the combined model lies between
the performances of the global and local models, which
shows that local models can improve classification per-
formance even under severe restrictions on the number
of features (depending on the dimension of the data
set, in some case only 1 feature is used). It can, how-
ever, not beat a more complex classifier in this case,
which is a result of both the locality restriction stop-
ping the local model from classifying more observa-
tions and the dimensionality restriction allowing only
very coarse local patterns.

Overall, the clustering approach seems to be slightly
better than the other, but differences are very small.
This may be a sign that the local pattern detection
task is essentially limited by the allowed size and com-
plexity of the patterns in terms of number of features
and not by the algorithm.

7. Conclusions

Next to accuracy, interpretability is a primary quality
criterion for classification rules. Traditionally, these
goals have been pursued independent of another. This
paper showed that using the framework of local mod-
els, it is possible to find a model which combines not
only good performance with an easily interpretable ap-
proximation, but, even more important, allows to give
guarantees about the correspondence of the approx-
imation and the combined classifier in terms of the
disagreement rate threshold 7 and in terms of an in-
terpretable description of the error regions.

In the proposed algorithm, clustering proves to be an
efficient tool for not only discriminating between the
global and the local model, but also for describing the
difference of both models in terms of a compact repre-
sentation of the structure in the global models errors.



Table 2. Experimental Results.

NaME GLOBAL LocaL COMBINED
SVM 1B CIB
BALANCE 0.644 0.940 0.727 0.909 0.788
BREAST 0.907 0.969 0.931 0.956 0.951
DIABETES 0.760 0.781 0.701 0.748 0.763
DIGITS 0.993 0.996 0.994 0.993 0.994
LIVER 0.579 0.695 0.635 0.634 0.631
WINE 0.927 0.971  0.927 0.943 0.932
BUSINESS 0.828 0.866 0.828 0.834 0.821
MEDICINE 0.719 0.744 0.749 0.748 0.756
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