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Abstract. Next to prediction accuracy, the interpretability of models is
one of the fundamental criteria for machine learning algorithms. While
high accuracy learners have intensively been explored, interpretability
still poses a difficult problem, largely because it can hardly be formal-
ized in a general way. To circumvent this problem, one can often find a
model in a hypothesis space that the user regards as understandable or
minimize a user-defined measure of complexity, such that the obtained
model describes the essential part of the data. To find interesting parts
of the data, unsupervised learning has defined the task of detecting local
patterns and subgroup discovery. In this paper, the problem of detecting
local classification models is formalized. A multi-classifier algorithm is
presented that finds a global model that essentially describes the data,
can be used with almost any kind of base learner and still provides an
interpretable combined model.

1 Introduction

It is commonplace knowledge that more and more data is collected everywhere
and that the size of data sets available for knowledge discovery is increasing
steadily. On the one hand this is good, because learning with high-dimensional
data and complex dependencies needs a large number of examples to obtain
accurate results. On the other hand, there are several learning problems which
cannot be thoroughly solved by simply applying a standard learning algorithm to
all the available examples. While the accuracy of the learner typically increases
with example size, other criteria are negatively affected by too much examples.
This paper will deal with the criterion of interpretability of the learned model,
which is an important, yet often overlooked aspect for applying machine learning
algorithms to real-world tasks.

The key problem with interpretability is that humans are very limited in the
level of complexity they can intuitively understand [9]. An optimal solution of
a high-dimensional, large-scale learning task, however, may lead to a very large
level of complexity in the optimal solution. What can we do about this problem?
Experience shows that one can often find a simple model which provides not an
optimal solution, but a reasonably good approximation. The hard work usually
lies in improving an already good model. Hence, we can try to find a simple
model first and then concentrate on improving only those parts of the input



space, where the model is not good enough. This will be an easier task because
less examples have to be considered and hence one might use a more sophisticated
learner. In other words, one constructs not one single global model for all the
data, but a global model plus one or more local models to cover special cases.
Also, for the aspect of discovering new knowledge, it may happen that the global
model finds only the obvious patterns in the data that domain experts are already
aware of. Patterns are more informative, if they are surprising [7], i. e. if they
contradict what is already known. Hence, it may also be the case that the local
models actually contains the interesting cases.

To avoid problems with finding general measures of complexity for arbitrary
models, this paper takes a very hands-on approach to interpretability: The user
is allowed to use an arbitrary global learner, such that he can pick the learner
whose results are the most understandable to him. He is also allowed to use
an arbitrary clustering algorithm, which will be used to identify where to use
the global algorithm and where not. So he can use the clusterer which will give
him the most understandable description, where his global algorithm is right. To
improve accuracy, a high-performance local learner is used to predict the rest of
the examples, as long as the deviation from the global model remains below a
user-defined threshold.

Summing up, the goal of this paper is to develop an hierachical, multi-
classifier algorithm for learning local models which

1. learns a global model that sums up the essential properties of the data
2. can use (almost) every kind of learner to find the global and local base models
3. reduces a given criterion of model complexity for the global model.

The rest of the paper is organized as follows: The next section will discuss
a broader picture of local models, complexity and interpretability. Readers that
are only interested in the proposed local model algorithm may skip this section.
Section 3 will review some learning algorithms which will be needed as parts of
our hierachical approach. The new local model algorithm will be presented in
Section 4, while Section 5 will discuss related approaches. Experimental results
are given in Section 6 and Section 7 gives some conclusions.

2 Local Models

There are two aspects to local models: structure and performance. The struc-
tural aspect refers to the case where the optimal model of the data is composed
of several parts that have a meaningful interpretation in terms of the appli-
cation. This may be the case because the structure behind the data can only
be expressed in a combination of hypothesis spaces of several standard learners
(e. g. a combination of numerical and logical rules) or because there are limits
in terms of interpretability. The performance aspect of local models refers to the
case that a good model can theoretically be found by a single learner on the
whole example set, but it is more efficient to use separate learning runs. Here,
the distinction between global and local models is only meaningful in terms of



algorithmic complexity and time and space requirements, but not in any intrinsic
way.
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Fig. 1. Relationship between local patterns and local models. The left circle is a local
pattern, but only a local model if its class is negative.

There is an obvious connection between local models and the detection of
local patterns [8]. Local pattern or subgroup detection is defined as the unsu-
pervised detection of high-density regions in the data. There are several way to
formalize local patterns. In the scope of this paper, local patterns are defined as
follows:

Definition: Given an input space X and some default probability measure
PDefault(X), a local pattern is a subset X ′ of X such that the empirical
probability1 of X ′ is significantly different from PDefault(X

′).

The idea is that the user already has some idea of what his data looks like (for
example he assumes that all items in a store are bought independently of one
another) and he his interested in cases where his beliefs are wrong (for example
an association rule describing which items are often bought together). In con-
trast, local models are meant to improve the classification, hence the interesting
quantity is the class probability P (y|x).

Definition: Given an input space X × Y and a default (or global) class prob-
ability measure PDefault(Y |X), a local model is a subset X ′ of X such
that the empirical probability Pemp(Y |X ′) is significantly different from
PDefault(Y |X ′), plus a classification rule with input space X ′.

Here, the user will not be bothered with deviations from the data to his beliefs,
as long as this does not have an influence on the attribute of interest y. The
difference can be seen in Figure 1. In a local pattern task, the default probability
could be a Gaussian approximating the large batch of data in the circle on the
right and the corresponding local model would be a smaller Gaussian describing
the circle on the left. In a local classification task, an obvious default model

1 The empirical probability of X
′ is the frequency of X

′ observed in the data, in
contrast to the expected frequency as defined by P (X ′).



would be the vertical line through the large circle, classifying all points to its
right as negative and the points to its left as positive. In contrast to the local
pattern case, the smaller circle will only be a local model if its class is negative,
i. e. different from the one predicted by the default model. Summing up, the
difference between both tasks is that in local model detection the goal is not to
just find regions with unsuspected density, but to identify those which can be
used to improve the overall performance, e. g. the classification accuracy.

Given these definitions it is obvious that the local model task can be solved by
detecting local patterns in the misclassified examples of the default classification
rule. This approach learns a very simple classification model: predict the negative
of the default rule. Its disadvantage is, that the simplicity of the classifier may
lead to the problem of learning very complex patterns. So the complexity of the
classification is not removed, but only transferred to the decision, where to apply
the classifier, i. e. the local patterns. As the classification problem is usually much
better investigated in machine learning than the local pattern problem, it will
usually be better to define a more simple pattern together with a more complex
decision function, see Figure 2. We will take this approach in this paper.

+ −+
−−

Fig. 2. Given the surrounding data is negative, the positive data can be marked in two
ways: a complex cluster plus a trivial classifier (default positive, right) versus a trivial
cluster (circle) plus a complex classifier (twisted line, right).

From the perspective of interpretability, the use of simple local patterns to-
gether with a more complex local classifier allows to better separate the local
and global models, because it minimizes the interactions between both models.
It allows to interpret both models on its own without the need to take interac-
tions into account, which account for a large part of the complexity of the overall
classifier.

Talking about interpretable models, one has to acknowledge that the concept
of interpretability is very hard to formalize. Interpretability of models is often
evaluated by interviewing a human expert, but reliable information is hard to
come by, as this would need a survey of several independent human experts.
Findings from psychology show that the size of the models plays some part, as
humans are usually only able to deal with about seven cognitive units at the same
time [9]. This motivates certain measures of model complexity like the number
or length of rules in logical models [17], which are traditionally assumed to be
more interpretable than other approaches, as logical rules can be easily cast into



sentences in natural language. However, experience shows that the experience of
humans with interpreting the kind of model or its visualisation plays a crucial
role. Plainly, humans tend to find the things the most interpretable, they are
already acquainted with. Concludingly, this paper takes a very pragmatic ap-
proach to the question of interpretability: let the user choose whatever learning
algorithm he likes best and optimize a user-given criterion of model complexity.

3 Learning Algorithms

In this section we will shortly introduce the learning algorithms that were used
in the experiments in this paper. A detailed discussion of these algorithms is
beyond the scope of this paper, we will restrict ourselves to those properties
that are of interest for the course of this paper. The learning tasks to solve are
both density estimation and probabilistic classification.

3.1 Density Estimation

Several algorithms exists for the approximation of a density P (x) from examples
(xi). We limit this discussion to the approximation by a Gaussian as the proto-
typical parametric approach and probably easiest density estimation technique.

To approximate the data by a Gaussian distribution one has to notice that
the multivariate Gaussian is completely determined by its mean and covariance
matrix. Hence, it suffices to calculate the mean and covariance matrix of the data
and substitute it into the Gaussian distribution. This is a very simple algorithm,
but also a very unflexible, as it is limited to a very special parametric form.
However, it turns out that this is sufficient for the local model algorithm of this
paper, as we do not need to approximate the density excactly, but only need the
densities to separate different local regions in the input space in order to split
the classification model up into less complex parts. This approach is similar to
the well-known k-means clustering algorithm, where one is not interested in the
form and density of each cluster itself, but only in the border line between each
cluster and the rest.

What is important in the course of this paper is the robustness of the density
estimation. Robustness means that if a certain fraction of examples is not drawn
from the distribution of interest, this should have little influence on the estimated
density. Standard estimates of mean and covariance can be heavily distorted by
far away outliers and hence the trivial Gaussian approximation is not robust. In
this paper, we use the Minimum Covariance Determinant estimator [14], which
searches for a subset of the examples of given size such that the determinant
of its covariance matrix becomes minimal and hence, the examples are located
very close together. The mean and covariance of this subset are then again used
to define a Gaussian density.



3.2 Probabilistic Classification

The goal of probabilistic classification is to not only find a classifier, but also
an estimation of the conditional class probability P (y|x). A general, but very
coarse solution is to use the classifiers accuracy or its precision for the positive
and negative class, respectively.

Numerical classifiers, i. e. classifiers of the form cl(x) = sign(f(x)), can
be transformed into probabilistic classifiers by finding an appropriate scaling
function σ such that P (Y = 1|x) = σ(f(x)). This scaling function can be found
by minimizing the cross-entropy

CRE =
∑

i:yi=1

log(σ(f(x))) +
∑

i:yi=−1

log(1 − σ(f(x)))

or the mean squared error

MSE =
1

n

∑

i

(
1 + yi

2
− σ(f(x)))2

over the space of applicable scaling functions.

In this paper Support Vector Machines [21] are used as numerical classifiers.
For Support Vector Machines, appropriate scaling procedures have been inves-
tigated in [11, 15]. A generic scaling function for a large variety of learners has
also been proposed in [6]. Other classifiers can directly give an estimate of the
conditional class probability, for example decision trees [13] where the class dis-
tribution at each leaf or its laplacian correction can be used as an estimator of
the class probability of an observation classified by this leaf.

3.3 Interpretable Learners

One of the goals of this paper is the interpretability of the classifier. As was
already pointed out in the introduction, the user may in principle prefer any
kind of classifier. In the following, we limit the discussion to decision trees as
interpretable learners, because they have some favourable properties with respect
to interpretability: First, decision trees can be easily visualised, because they
consist of a simple tree structure and simple tests. They can alse be transformed
into a set of independent rules, which the user can investigate one after the
other. Secondly, there are two simple measures of model complexity, namely the
depth of the tree and its number of nodes. It is obvious that a decision tree is
the more understandable, the less tests have to be made in order to classify an
observation and the less tests it contains in general. This allows us to quantify
the degree of complexity reduction. Thirdly, these measures of complexity can
directly be optimized at the construction of the tree by cutting the tree off at
the maximal allowed depth and continuing with the pruning phase of the tree
induction until the maximum number of nodes is met.



3.4 Expectation Maximization

The Expectation Maximization (EM) algorithm [2] is a general technique for
computing the maximum likelihood estimates of the parameters of a distribution
in the presence of hidden variables. This approach assumes that in addition to the
observed data X , there are hidden variables Z, such that the observations (xi)
could be modeled much better if the (zi) were known. The EM algorithm involves
two steps, the expectation step and the maximization step. The E-step computes
the values of the hidden variable zi, or a sufficient description thereof, given the
current estimate of the parameters. The M-step computes the parameters as
the maximum likelihood estimation given the observed data and the current
estimate of the hidden variables. Both steps are iterated until convergences or a
sufficient number of times. It can be shown that the EM algorithm converges to
a local optimum under some very general assumptions. The well-known k-means
clustering algorithm is a famous application of the expectation maximization
algorithm.

4 Algorithm

Following the earlier discussion on complexity and interpretability, we assume the
following problem setting: We are given data (xi, yi), i = 1 . . . n , two arbitrary
learners LGlob and LLoc, a density estimation algorithm and a real number τ ∈
]0, 1[. We want to find a model that is a combination of a global model learned
from LGlob and several local models learned from LLoc, such that the combined
model differs from the global model by at most τ . More formally, we define
dummy variable zi, i ∈ 1 . . . k for the single base models, and let the combined
model take the form

P (Y = 1|x) =
1

P (x)

k∑

j=1

P (Y = 1|x, z = j)P (x|z = j)P (z = j),

where

P (x) =

k∑

j=1

P (x|z = j)P (z = j)

with P (z = 1) > 1 − τ . We replaced the classifiers y = f(x) by estimators of
the conditional class probability P (Y = 1|x), which can be done by one of the
algorithms described in Section 3.2. Hence, by inspecting P (Y = 1|x, z = 1) (the
global model), the user learns how the combined model behaves on a fraction of
P (z = 1) > 1−τ of the cases, while inspecting the P (x|z = j) tell him where the
global model is applied and where not. Note that although at each point x the
combined prediction is a linear combination of the base models predictions, the
combined model is a nonlinear combination, as the P (x|z = j) are not linear.

The local model problem as it is defined here is a most general black-box
setting, as we neither assume knowledge about the internals of the learning and



density estimation algorithms, nor about the interpretation of its models. In
particular, we do not assume that it is possible to assign weights to example,
modify the learners parameters or deduce the influence of specific training ex-
amples to the learners model. The only possibility for the overall algorithm to
interact with the given learners is to present the learners different training sets.
For the outputs, we only assume that the classifiers return a real value and that
the higher this value is, the more certain the classifier is that the observation
belongs to the positive class (in particular, this includes the case of a simple
binary classifier f(x) ∈ {−1, +1}). It was shown by Garczarek [6] that this is
sufficient to convert the classifiers output into an estimate of the conditional
class probability P (Y = 1|x).

Equation 4 contains two special cases for learning interpretable models as
extremes: For P (z = 1) = 1, we use only the global learner. This gives the user
full control over what the learner does, but only in a few lucky cases the most
understandable and the most accurate model will coincide. For P (z = 1) = 0, one
may use the most accurate model. The user may still inspect a model from the
global learner to understand the data, but he has no control over in which cases
the interpretable and the accurate will disagree, as he is missing the explicite
model P (x|z = i) of global and local regions.

Of course, there are many other methods for combining several learners and
one might ask, whether explicitely learning density models in the mixture ap-
proach as described in Equation 4 is not a more complex task than necessary. To
justify the mixture idea, let us compare it with two simpler approaches: First,
in Section 3.2 we described the idea of probabilitically scaling a classifier to
obtain an estimate of the conditional class probability P (y|x). Now, one might
think of using the most confident classifier for each example or to combine the
confidences of each classifier. But this idea is fallacious, because in general each
classifier can only be trusted to give good probability estimates over the region of
the input space it was trained and scaled on. For example, a linear classifier will
be the more confident the further away from the decision line the observations
lie, regardless of the position of its training examples. Hence, a local classifier
may either give much too optimistic results on non-local examples (when scaled
over the local examples only) or too pessimistic results on the local examples
(when scaled over many examples it was not trained on).

A second seemingly easier approach to learning local models would be to use
the local learner to predict whether the global learner is right or not. But this,
too, is not a good approach, because it makes the local learning problem much
more complex. The learner has not only to find structures in the data but also
the structure superimposed by the global model. Besides from complicating the
learning problem, this effectively prohibits to understand the overall prediction
by looking at the global model, as any prediction from the global model might
be negated by the second model. Hence, in this paper we use a combination of
models were each learner is trained to directly predict the true class.



4.1 Learning the Combined Model

To find the combined model, we borrow ideas from two well-known learning
algorithms: classification with covering algorithms and EM clustering. Covering
algorithm find a logical rule which covers a part of the data, remove the examples
covered by this rule and then iteratively find further rules to cover the rest of
the data. Because of their iterative nature, they are well suited for the task of
finding local models, when one views the first rule as the global rule and the
following rules as local models Learning by covering makes explicit use of the
fact that logical rules (e. g. “X1 = a∧X2 ≤ b ⇒ Y = 1”) make predictions for
only a part of the input space, such that it is clear which rule can be applied.
But this means that this idea cannot be directly applied to other base learners,
as in general, learners may make a prediction for every observation in the input
space. This is the reason why we need an additional density estimator to select
which model to use.

To find both the models and the clusters, on which each model should be
applied, we may proceed similar to EM clustering. EM clustering algorithms
iteratively find a cluster model, then for each example estimate the probability
of belonging to each of the clusters and re-estimate the clusters using these
probabilities as weights (i. e. an example with low probability of belonging to
some cluster will have little influence on the shape of this cluster). One might be
tempted to solve the local model problem by directly using clustering as a pre-
processing step, perhaps with a minimum size constraint on the first cluster, and
then find a different local model for each cluster. But this strategy may fail, as
clustering groups observations according to some similarity measure in X , while
we are interested in grouping observations together if they can be predicted by
the same model. If observations look very different in the input space, but can
be correctly predicted by the same simple model, there is no reason to treat
them differently as far as classification is concerned. This is the same situation
as described in Figure 1.

The reason for using an EM-like approach instead of a greedy approach as in
covering algorithms is that even if there is a simple structure behind parts of the
data that one learner could find, the learners model may be distorted by outliers
from the rest of the data. This problem can be seen in Figure 3 in Section 6,
where a linear hyperplane from a Support Vector Machine is distorted by a small
set of far away outliers. Once the local examples are known as such, it is very
easy to improve the model by removing this examples from the training set of the
classifier. Hence, it is important to re-evaluate the models once more information
about clusters and outliers is present. The Expectation Maximization procedure
allows to optimize both models in parallel by finding an optimal allocation from
examples to learners.

As we are interested in predicting x, i. e. in the conditional class distribution
P (y|x), in the final application of our model only x, but not z, is known, such
that we can make use of the mixture decomposition 4 of P (Y = 1|x) only if z

can be identified from x alone. Hence, we need the following assumption:



Assumption: The distributions P (x|z = j) differ significantly for two different
j1, j2.

We will not define formally, what a significant difference of two probability dis-
tributions is, as this is not crucial for the algorithm presented here. What is
important is the intuition that the decomposition in k distributions will only
be of benefit if the distributions live in different part of the input space X . Ac-
cordingly, in this paper the terms j-th probability distribution Pj(x), j-th cluster

and j-th batch of data are used interchangeably. It is easy to check whether this
assumption holds by computing

P (Z = j|x) =
1

P (X)

∑

i

P (x|Z = j)P (Z = j)

for each x in the trainig set. If the assumption holds, the distribution of P (Z =
j|x) should follow an U-form, i. e. most examples should either clearly belong
to the j-th cluster (P (Z = j|x) ≈ 1) or clearly belong to a different cluster
(P (Z = j|x) ≈ 0).

In a similar way to P (z|x), we can also compute P (z|x, y) as

P (z|x, y) =
P (x, y, z)

P (x, y)
=

P (x, y, z)∑
z P (x, y, z)

with
P (x, y, z) = P (y|x, z)P (x|z)P (z).

Note that here we need to transform the conditional class estimate P (Y = 1|x, z)
given by the learner into the probability P (y|x, z) that the learner predicts the
correct class. Following the update of P (z|x, y), the default probability P (z) can
be re-estimated as P (z) = avgiP (zi|xi, yi).

Theoretically, we could now follow the algorithm for EM clustering algorithm
by using P (z|x, y) to assign examples to clusters and then use the learner and
density estimator on each cluster to learn an update of P (y|x, z) and P (x|z).
But it turns out that we need another intermediate step. The problem is the
allocation of examples to batches in the presence of noise. Imagine the case
when a large part of the error is due to random noise in y, independent of x,
e. g. by independently flipping any label with a fixed, small probability. When we
have an approximately correct global model, every non-flipped example will have
a high P (z|x, y), while every flipped example will have a very small probability
belonging the global model, as the model can be quite certain that the example
belongs to its cluster (high P (x)) and can be quite certain that its prediction is
correct on the average (high P (y|x)), but the prediction indeed is wrong (flipped
label). As a result, the examples with the lowest probability P (z|x, y) will most
likely be the errors of the global model and hence, the best local classifier to learn
from these examples is the negative of the original classifier. Now one would need
to know if the first classifier is wrong beforehand, because by the independence
of P (noise) and P (x), the observation x is completely uninformative to the
correctness of the first classifier. This is of course totally useless.



To remedy this problem we double the EM-step of the algorithm: in the first
step, we allocate examples to batches with respect to P (z|x, y) (E-step 1) and
then learn a cluster model Pj(x) = P (x|z) only (M-step 1). In the second step,
we allocate examples to batches with respect to the learned P (z|x) (E-step 2)
and conclude with learning the classifier Pj(x) = P (y|x, z) from the new batches
(M-step 2). The trick is that now in the first M-step the density estimator only
sees the examples that this model can predict better than any other, while in
the second M-step the classifier does see all the examples it will be asked to
predict later. That is, the first step is to find a local pattern (deviation from the
combination of the rest of the models), and the second step is to learn a model
for exactly this pattern.

In each E-step, we take care to partition the examples into disjunct batches
for each learner by first choosing the examples for the batches with higher p(z)
and then choosing the examples for batches with lower p(z) from the rest. This
makes sure that different batches do not learn redundant models.

Alternatively, one could also give each learner the complete example set plus
weights based on P (z|x) or P (z|x, y), as in standard k-means. We do not use this
approach here, because we want to be able to ’plug-in’ as many different learners
as possible and there exist many types of learners that cannot deal with example
weights. A possible alternative to the approach defined here is to not partition
the example set but allow the batches to overlap themselves to a certain degree,
in order to account for undecisive batch probabilities.

4.2 Finally, the Algorithm

The final algorithm looks like this:

Local Model Algorithm:

1 input: data (xi,yi), #clusters k, #iterations i,

threshold tau

2 independently learn k models Pj(X,Y)

3 repeat i times

4 for all j estimate P(zi=j|xi,yi) from Pj

5 adjust P(zi=j|xi,yi) such that P(z=1) >= 1-tau

6 assign observations (xi) to batch j = argmax(P(zi=j|xi,yi))

7 for all j estimate P(zi=j|xi) from Pj

8 adjust P(zi=j|xi) such that P(z=1) >= 1-tau

9 assign examples (xi,yi) to batch j = argmax(P(zi=j|xi))

10 for all j learn model Pj(x,y) from batch j

If P (z = 1) < τ in step 5 or 8, we set P (z = 1) = τ and adjust all other P (z = j)
linearly.

As we do not use weights for the examples, but a hard threshold to decide
whether or not to include an example in a training set, we cannot give a con-
vergence result as in standard k-means or other EM algorithms (in k-means,
the models are continuous in the weights of the examples, but of course there is



no continuity in including or excluding an example). Hence, the final model is
chosen as the model with minimal training error.

5 Related Work

There exists several approaches for combining multiple classifiers, for example
Voting, combination by order statistics [20], Meta-Level Learning [1], Stacking
[22], Cascade Generalization [5] and Boosting [3]. In Boosting, the combined
classifier is a linear combination of the base classifiers. The single classifiers and
their weights are learned iteratively. In each step, explicit information about the
error of the combined classifier so far is used and the classifier is added, that
reduces the error of the combined classifier the most in terms of a certain loss
function [4]. This idea is implemented by assigning a weight to each example.
After each step, the weights of the correctly classified examples are reduced an
the weights of the misclassified examples are increased. The weights can be seen
as a probability distribution over misclassifications.

Boosting is a most successful approach in terms of accuracy, but the in-
terpretability of its model is very limited. Following the terminology from this
paper, one might be tempted to call the first base model the global model and
the following models, that are learned with respect to the error distribution of
the combined model so far, local models. The problem is, that the following
models are not meaningful by themselves, but only with respect to all the mod-
els and their weights learned so far. If for example the i-th model shows that
a certain combination of attribute values is indicative of the positive class, this
does not mean that there is a correlation between these attribute values and the
positive class in the data, but only means that the combined classifier so far has
for some reason estimated too much influence of these attributes to the negative
class. Also, Boosting is a greedy combined learner, i. e. previous models are not
corrected once they have been learned, even if it turns out that they are wrong
in several parts.

With respect to interpretability, most other combined learners suffer from
the same problem, namely that to understand the model one has to understand
every single base model plus the way these models are combined. Even if the
base models are trivial, their combination can be quite complex. Boosting with
decision tree stumps is an example of that.

An understandable combination of classifiers needs some kind of orthogonal-
ity, such that the effect of one model is independent of the effect of the other
models, to ensure that the problem can be validly split up into smaller inde-
pendent parts. One way to ensure this orthogonality is to split up the input
space and find out which classifier works best in the different regions. Splitting
up the input space can be done either beforehand by clustering or inside the
learning procedure. Examples of this approach are [18] and [19]. Decision trees
also iteratively split up the input space, such that theoretically one could define
the first levels of the tree as a partition of the input space and the following
levels as separate classifiers for each partition (but this is probably stretching



out the idea of local classifiers too far). More advanced, in [16] decision trees and
kernel density estimators have been combined to smoothen the posterior class
probabilities.

However, in most cases existing approaches are usually either not easily in-
terpretable or limited to a specific class of base learners. The goal of this paper
was to find an algorithm that keeps up interpretation and works with arbitrary
base classifiers.

6 Experiments

-4

-3

-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2

Positive
Negative

SVM

Fig. 3. Global model learned by a linear Support Vector Machine on a simple data set.

Let us first investigate the proposed local model algorithm on an artificial
data set. Figure 3 shows a 2-dimensional data set of 200 observations consisting of
two Gaussians, centered at (0, 0) and (2, 2), respectively. The first batch contains
95% of the observations with a standard deviation of σ = 1, while the second
batch is smaller both in term of number of observations (5%) and in standard
deviation (σ = 0.1). The positive examples are the examples from the first batch
with negative second coordinate plus the examples from the second batch. An
additional error of 5% in the labels was randomly added.

The straight line in Figure 3 shows a linear SVM classifier learned over all
examples. One can see how the linear hyperplane is pulled into an ascending
slope by the positive examples from the second batch.

Figure 4 shows the result of the local model algorithm after one iteration.
In addition to the global linear classifier, a local linear classifier was added to
classify the examples from the second batch as positive. Notice that the global
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Fig. 4. Global model plus local model learned by the proposed algorithm with linear
SVMs as the base learner.

classifier has gone back to the axis-parallel alignment that is optimal for the first
batch.

6.1 Complexity Measure Reduction

The effect of interpretability improvement is of course hard to measure. To obtain
quantifiable results, a C4.5 [12] decision tree learner is used in the following
experiments, such that interpretability can be reduced to meaning having a small

number of nodes or levels. To ensure an interpretable tree, the learning algorithm
was modified such that the maximum depth of the tree was cut off at 75% the
depth of the tree from the vanilla algorithm.

The experiments were conducted on 7 data sets, including 5 data sets from
the UCI Repository [10] (breast, covtype, diabetes, ionosphere, liver) and 2 other
real-world data sets: a business cycle analysis problem (business) and intensive
care patient monitoring data (medicine). Prior to learning, nominal attributes
were binarised and the attributes were scaled to expectancy 0 and variance 1.
Multi-class-problems were converted to two-class problems by arbitrarily select-
ing two of the classes (covtype) or combining smaller classes into a single class
(business, medicine). For the covtype data set, a 1% sample was drawn. The
following table sums up the description of the data sets:



Name Size Dimension
breast 683 10
covtype 4951 48
diabetes 768 8
ionosphere 351 34
liver 345 6
business 157 13
medicine 6610 18

In addition to depth and number of nodes of the decision tree, the error of
the combined classifier C-error, the error of the global decision tree classifier
G-error and the disagreement between global and combined classifier disagree,
i. e. the fraction of examples predicted differently by both classifiers have been
recorded. All numbers reported are results of a 5-fold cross-validation.

The Support Vector Machine was used as local classifier. The type of kernel
function (linear or radial basis) and the kernel parameters were selected before-
hand by optimization over all examples. The C parameter was set at a default
value. For density estimation, k-medoids, a robust version of k-means, was used.

In all experiments, one local model was learned and a fraction of τ = 0.3
examples were allowed for this local model. 3 EM iterations were performed.
The following table sums up the performance of the local model algorithm:

Data Iteration Depth Nodes C-Error G-Error Disagree
breast 1 5.0 17.4 0.042 0.042 0.0

2 2.8 10.6 0.236 0.074 0.226
3 1.2 3.4 0.029 0.067 0.055

covtype 1 22.4 528.2 0.228 0.229 0.001
2 15.6 332.6 0.227 0.227 0.054
3 15.6 366.6 0.227 0.239 0.058

diabetes 1 6.8 24.6 0.266 0.276 0.016
2 4.0 14.6 0.242 0.250 0.251
3 4.0 15.8 0.247 0.251 0.030

ionosphere 1 7.0 21.4 0.096 0.096 0.0
2 4.0 9.4 0.116 0.119 0.054
3 4.0 10.2 0.099 0.122 0.034

liver 1 9.8 49.0 0.313 0.318 0.005
2 5.2 20.2 0.368 0.339 0.220
3 6.0 24.6 0.350 0.347 0.205

business 1 6.4 20.2 0.223 0.223 0.0
2 3.6 10.2 0.210 0.255 0.094
3 3.6 12.2 0.216 0.222 0.057

medicine 1 19.2 389.4 0.202 0.204 0.017
2 13.6 245.4 0.206 0.215 0.073
3 13.6 239.8 0.211 0.219 0.104

It can be seen that the complexity of the tree classifier is reduced dramati-
cally compared to the tree from the usual C4.5 algorithm (the first step is done



without cutting off the tree, hence the size of the vanilla C4.5 tree can be seen
in iteration 1). However, this complexity reduction does not decrease the classi-
fication performance, with the exception of the liver data set. On the average, in
the third iteration the error is reduced by 4% while the size of the decision tree
is reduced by 46%. Global and combined classifier differ in 7% of the cases. This
shows, that the local model algorithm can effectively find a much less complex
approximation to the optimal model.

7 Conclusion and Future Work

Local models are the extension of local patterns to the supervised learning case.
They provide a good way to improve the interpretability of a classifier by re-
stricting the classifier to the essential parts of the model and leaving out patterns
that it hardly can approximate. In this paper, a local model algorithm was pre-
sented that learns a global classifier plus local models to reduce complexity of the
global model, ensure the prediction quality of the combined model and provide
guarantees that combined and global model will differ only up to a user-specified
degree. This allows the user to restrict his attention to the global model and still
get valid information about the high-quality combined model.

Another important aspect of this approach is the interpretability of the local
models. In applications global rules often express only trivial knowledge about
the data, that the user is already aware of, while the significant exceptions of
these rules are highly informative. This aspect of local models will be dealt with
in future work.

Another open problem concerns the runtime of the algorithm. Each iteration
requires to learn a density and a classification model for both the global learner
and the local learners. While the local models hopefully do not pose a problem,
as only a small part of the data is concerned, the global models require to deal
with possibly very large data sets. Theoretically, learning with local models could
alleviate this problem, as it allows room for errors of the global model, which
can be dealt with by local models. This would allow to use sampling or a faster,
less accurate learner for the bulk of the data. It remains to be investigated how
well this works in practice.
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