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Abstract

The analysis of clinico-genomic data poses
complex problems for machine learning. As
high volumes of data can be generated eas-
ily, selecting the most suitable KDD-process
for the problem at hand becomes increas-
ingly hard, even for experienced researchers.
The main idea of this paper is to facilitate
process selection by representing each data
set by a graph based on the ontology that
describes data set attributes, and to apply
graph mining methods to perform a similar-
ity search. Some new measures for an effec-
tive comparison of a data set graph induced
from the ontology are proposed. The effec-
tiveness of the proposed approach is evalu-
ated on three datasets. The results show that
using ontology-based characteristics leads to
improving the characterization of a data set.

1. Introduction

In recent years, developments in distributed architec-
tures, such as Grid technologies, have led to a vast
increase in computing power and storage space that
is available to end-users. The drawback of easily gen-
erating large volumes of data is that its analysis be-
comes increasingly hard and that even experienced
researchers are facing problems to keep track of the
state-of-the-art for a given analysis problem. Instead
of being supported by information technology, the user
is overwhelmed by an enormous volume of informa-
tion. Hence, the user needs assistance in navigating
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the space of appropriate KDD processes. The knowl-
edge about solutions that were successfully used in the
past for a similar problem provides a good base for
building a supportive system for the user.

This work aims to develop an approach that assists the
user without specific data mining experience to select
a suitable KDD process. The fundamental idea that
underlies this work is that data sets similar in content
are likely to be analyzed with the same KDD processes.

This assumption allows to reduce the problem of KDD
process selection to searching for similar data sets.
However, measuring the similarity between data sets
is not a simple task. What is needed is a description
of a data set that allows efficient comparison. Each
data set can be represented by a tuple D =(A,T) con-
sisting of attributes (A) and data (T). The current
approach to describe a data set used in meta-learning
rely on a set of characteristics that can be derived di-
rectly from data (Peng et al., 2002; Kalousis & Hilario,
Januar 2001; METAL, 2002). There is still a need to
improve the characteristics by developing more infor-
mative ones. This work aims to extend the data set
description by involving new characteristics which fo-
cus on attributes to include semantic information. We
propose to describe a data set by using the relationship
between attributes captured in an ontology. For each
new data set based on the developed characteristics we
can find the most similar existing data set with known
good analysis process. The top k of these processes
can be applied to the new data set. The next task is
the method for comparison two dataset based on the
developed characteristics.

The main results of this work are the development of
ontology-based characteristics to improve the dataset
description, the development of a method allowing ef-
fective comparison of datasets based on the developed
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characteristics, and the evaluation of the approach.

This paper is organized as follows: The next section
gives a short introduction to a real-life Grid project,
on which this work is based. Section 3 presents a brief
overview of previous research. The novel approach for
characterizing and comparing datasets is presented in
Section 4. Experiments and results illustrating the ef-
fectiveness of new the approach are presented in Sec-
tion 6. Section 7 concludes the paper.

2. The ACGT Project

In this section, we give a short introduction to the
ACGT1 project, as we feel that it is necessary to un-
derstand some of the implications of eScience applica-
tions to understand our approach.

In recent years, the rapid development of high through-
put genomics and post-genomics technologies has pro-
vided clinicians fighting cancer with new discovery
paths and has opened the possibility to develop
patient-specific treatment strategies.

However, the amount of information now available for
each patient (e.g. in microarray context from 10,000s
to 100,000s of variables summarizing up to millions of
array features) has rendered difficult the isolation of
the clinically relevant information from all available
data. Considering the current size of clinical trials
(hundreds of patients), there is a clear need, both from
the viewpoint of the fundamental research and from
that of the treatment of individual patients, for a data
analysis environment that allows the exploitation of
this enormous pool of data (Wegener et al., 2007).

Advancing Clinico-Genomics Trials on Cancer
(ACGT) project aims at developing an open-source
IT infrastructure to provide the biomedical com-
munity with the tools needed to integrate complex
clinical information and make a concrete step towards
the tailorization of treatment to the patient.

The ACGT architecture can - for the purposes of this
paper - be described as a workflow enacting environ-
ment for based on distributed computing and Grid
technologies. It will provide a large set of data analysis
operators from which suitable analytic workflows can
be constructed. Grid technology allows to securely
execute computational intensive, geographically dis-
tributed, parallel workflows, which forms an excellent
basis for conducting knowledge discovery experiments.
Note that while it is infeasible to explore the complete
space of possible workflows, it is still very easy to exe-
cute and compare a larger set (say, 20) of workflows in

1http://www.eu-acgt.org

parallel. This simplifies the problem of KDD process
selection somewhat, as we are no longer required to re-
liably identify the optimal one. Instead, it suffices to
identify a good set of candidate workflows, such that
the optimal one is among the top k. This motivates
our approach of viewing the process selection problem
essentially as a top k ranking problem.

2.1. The ACGT Master Ontology on Cancer

Data access within ACGT is based on a semantic Grid
infrastructure to enable integrated access to multilevel
biomedical data (Tsiknakis et al., 2008). The basis of
this approach is the ACGT Master Ontology on Can-
cer, which can be used to describe and query stored
data sets (Brochhausen et al., June 17 19 2008). The
Master Ontology consisting of 1109 classes and 121
restrictions. An overview can be seen in Figure 1.

Figure 1. Excerpt from the ACGT Master Ontology

Note that while strict legal and ethical guidelines on
privacy severely restrict the storage and processing of
actual patient data except for clearly defined purposes,
much less restrictions exists for meta data descriptions
of these data sets and statistics about KDD process
executions. For this reason, we base our algorithm on
an analytic database of ontologic data descriptions and
process performance measures.

3. Related Work

Several approaches to describe a dataset aim to assist
a user by selecting an appropriate algorithm. There
exist algorithms that perform good on some datasets
but can’t be applied on the others.

Extensive research to develop characteristics describ-
ing a dataset has been performed in the context of
StatLog Project (Kalousis & Hilario, 2001). Descrip-
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tion was created using a number of simple, statis-
tical and information-theoretical measures estimated
directly from a dataset. Developed characteristics
have been repeatedly used for algorithm predictions in
many works (Brazdil et al., 1994; Sohn, 1999; Todor-
voski & Dzeroski, 1999).

(Engels & Theusinger, 1998) presents a tool for au-
tomatic computation of dataset characteristics devel-
oped in StatLog Project called DCT - Data Charac-
terization Tool. In context of METAL Project (Köpf
et al., 2000) this set of measures has been extended by
some new characteristics. The current version of DCT
is able to compute about 50 basic measures for each
dataset, and additional measures for each attribute.
The METAL ”Meta-Learning Assistant” available un-
der (Köpf et al., 2000) is a web-enabled prototype pro-
viding support for the user of machine learning tools.

3.1. Meta Learning

In this section we shortly present the meta-data-based
approach to dataset characterization that was used as
a part of the experiments in this paper. According to
the idea that the characteristics of a dataset provide
some important information for an algorithm selection
two basic tasks of meta-learning can be defined: de-
veloping a dataset description and deriving knowledge
about correlations between particular characteristics
and the performance of several algorithms.

Some basic strategies to describe the data set are pre-
sented below. Here, we have analyzed in detail the
characteristics developed in the context of METAL
Project. They are three basic sets of measures that
can be estimated directly from the data set. Recall
that the data set consists of a set of attributes and
data D=(A,T). Characteristics that were constructed
include simple characteristics (number of classes, fre-
quency symbolic and numeric attributes, distribu-
tion of classes, accuracy of the default-class), statis-
tical characteristics (number of significant discrimi-
nant functions, Willk’s Lambda), and information-
theoretical characteristics (entropy of classes, entropy
of attributes, joint Entropy, equivalent number of at-
tributes, mutual information, noise).

These characteristics are computed using only one as-
pect of a dataset, namely the data. As mentioned
above, we propose to concentrate on the semantic in-
formation contained in the attributes of the dataset.
The semantic knowledge in the form of ontologies pro-
vides a powerful support for the techniques used for
managing data in recent years. However, there might
be attributes in the data set that syntactically are
different from one another but semantically they are

equivalent and express the same concepts. We use an
ontology as a semantic layer to describe the semantic
relationships between the dataset attributes in order
to extract additional information about the dataset.

To use ontologies in our approach the following re-
quirements should be met:

1. An ontology should be broad enough to describe
a wide range of concepts belonging to the subject
area.

2. An ontology should be specific enough to describe
correctly the relationships between the attributes
of the dataset belonging to this subject area.

As we can see the ACGT Master Ontology describing
data sets demonstrates a realistic situation where both
of these requirements are met.

3.2. Graph Mining

Modeling complex data with the help of graphs has
become an active research area in the last few years.
Graph models are successfully used in a broad range
of applications, such as web analysis, drug discovery
and compound synthesis. While data mining is con-
cerned with frequent data values, graph mining deals
with frequent subgraphs and common specific topolo-
gies. Traditional approaches to characterize the graph
to discover typical patterns are realized in two differ-
ent ways, namely by structural features (Nakano et al.,
2007) and by the number of occurrences of certain sub-
structures (e.g. in drug discovery (Deshpande et al.,
2003)). The first approach is used in our work to rep-
resent a dataset modeled as a graph by a set of its
topological properties.

4. New Approach

4.1. Representing datasets as graphs

Based on the ontology describing a domain of dataset
attributes we can transform a dataset to a graph. Ba-
sic steps are as follows.

4.1.1. Construction of vertices and edges

As first step the dataset attributes are mapped to the
corresponding concepts in the ontology. Formally, an
ontology O = (C,≤C , σ, R,≤R) consists of a set C of
concepts that correspond to classes, a set R of rela-
tions among class members, a partial order ≤C on C
(called taxonomy), a partial order ≤R on R (called re-
lations hierarchy), and a function σ : R → C ×C that
maps the relations to the concepts type. For a dataset
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D = (A, T ) we define the dataset graph as G = (V, E),
where V = A and E = {(v, v′)|(v, v′) ∈ R, v, v′ ∈ V }.

The dataset attributes can be seen as a set of nodes.
Each node is labeled with the corresponding attribute
name. The set of edges can be modeled by the relation-
ships between corresponding concepts in the ontology.
Two vertices in the dataset graph become adjacent if
there exists a direct link between the related concepts
in the ontology. In order to include in a dataset graph
the information about the ontology structure each edge
is associated with a weight value. We define the weight
of the edge (v, v′) as its depth in a taxonomy that is
included in the ontology. A visualization of this step
is shown in Figure 2.

Figure 2. Mapping attributes to ontology concepts.

In the case that no direct relationships between the at-
tributes in the ontology are available the dataset graph
consists only of the vertices, while the set of edges is
empty. Such a structure is not suited for the com-
parison. To remedy this problem we perform a pri-
mary graph extension to produce a connected graph.
A graph is called connected if there is a path from any
node to any other node in the graph.

4.1.2. Extension of the nodes set

The node set is extended with the following nodes:

V ∗ = {v∗|v∗ ∈ shPath(v, v′), v, v′ ∈ V } (1)

where shPath(v, v′) is the shortest path between v and
v′. V ∗ consists of the vertices lying on the shortest
path between every two vertices that are not directly
adjacent in the ontology. The primary set of nodes
is extended with the ”missing” concepts that connect
the attributes in the ontology.

4.1.3. Extension of the primary graph

As the last step the set of edges is extended with the
edges that join the vertices from V and V ∗ in the ontol-
ogy graph. Figure 3 gives an example of an extended

graph.
E∗ = {(v′, v′′)|v′, v′′ ∈ V ∪ V ∗} (2)

The final dataset graph GA is defined as follows:

GA = (V ∪ V ∗, E ∪ E∗) (3)

Figure 3. Extended data set graph.

4.2. Local Measures

As described above the dataset is represented by a
graph. The connections of the graph vertices corre-
sponds to the structural information of the dataset.
Based on this concept we characterize the dataset
by the following topological properties of the induced
graph: characteristic path length (average length of
the shortest path between two vertices in a graph),
edges distribution (average number of edges connected
to the vertices), diameter (maximal distance between
two vertices in the graph), distance to the target at-
tribute (minimal distance between the target attribute
and the other verteces), and connectivity (also called
the Beta-Index) The local similarity measures are de-
fined as the linear difference of the corresponding
graph properties.

4.3. Distance measures for dataset graphs

Next we introduce some new measures computed by
directly comparing of two dataset graphs. The fol-
lowing distance measures for two dataset graphs are
proposed:

Relative size of maximal common subgraph:

This measure estimates common attributes and rela-
tionships.

dist1(G1, G2) = 1 −
|MGS(G1, G2)|

max(|G1|, |G2|)
(4)
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Relative sum of common subgraphs: Besides
the maximal common subgraph all common subgraphs
provide useful information regarding graphs similarity.
At first we find the set of all common subgraphs for
G1 and G2:

SUB(G1, G2) = {S1, S2, . . . , Sn}, where Si ∩ Sj = ∅
(5)

The subgraph size is divided by the maximal graph size
to normalize the distance value. The final distance is
computed as follows:

dist2(G1, G2) = 1 −
n

∑

i=1,Si∈SUB

|Si|

max(|G1|, |G2|)
(6)

4.4. Ontology-based measures

Based on the ontology we can examine the content
similarity of dataset attributes. In the case that at-
tributes with different names correspond to the same
ontology concept, they are equal. If there are many
equal attributes, then datasets are likely to be very
similar. We define the distance measures based on the
distance between two concepts in the ontology.

To determine the distance between target attributes
we use the normalised weighted path length between
the corresponding nodes in the ontology. It can be
computed by adding the weights of the corresponding
edges.

dist3(c1, c2) =
lengthw(c1, c2)

D
(7)

where dist3(c1, c2) is the distance between the target
attributes c1 and c2, lengthw(c1, c2) is the weighted
length of the shortest path between c1 and c2, and D

is the maximal weighted path length in the ontology.

For example, based on the ontology given by Fig-
ure 2 we compute distance between attributes ”wa-
ter solubility” (c1) and ”dipole moment” (c2) as fol-
lows:

dist3(c1, c2) =
(1 + 2 + 2 + 1)

(1 + 2 + 3 + 3 + 2)
(8)

To measure the average similarity of dataset at-
tributes, attributes are compared pairwise using (7)
and the corresponding values are averaged.

4.5. Distance between sets of attributes

In order to create a connected graph the primary set
of attributes is extended by some vertices. Therefore,
primary and extended attribute sets are different. We

introduce two additional distance measures respecting
this problem by comparison of primary attribute sets,
the Jaccard Distance and the Overlap-coefficient. De-
spite the name, the Jaccard distance is a similarity
measure and estimates the ratio of common attributes
relative to all attributes:

dJaccard(A1, A2) = 1 − sim(A1, A2) = 1 −
|A1 ∩ A2|

|A1 ∪ A2|
(9)

The Overlap-coefficient estimates the ratio of common
attributes relative to the maximal attributes set.

dOverlap(A1, A2) = 1−sim(A1, A2) = 1−
|A1 ∩ A2|

max(|A1|, |A2|)
(10)

4.6. Global Similarity Measure

The global similarity of datasets (σ∗) is implemented
as a weighted sum of the base similarity measures (di)
from Sections 4.2, 4.3, 4.4 and 4.5.

σ∗ = 1−dist∗ = 1−(d1 ·w1+d2 ·w2+· · ·+dk ·wk) (11)

Weights (wi) can be found using the supervised learn-
ing algorithm described below. The motivation of our
approach is based on the assumption that similar data
sets are likely to have similar rankings of KDD pro-
cesses. In order to define a learning problem, we turn
this assumption around and actually define data sets
to be similar when they have the same ranking.

Definition: Given a set of KDD processes P =
(Pi)

n
i=1, consider the set D of all data sets on which all

Pi can be applied. Let q be some real-valued quality
measure on the output P (D) of a process P on a data
set D ∈ D. Two datasets D and D′ are called similar,
if the ranking of the qualities of the processes in P on
D and D′ is similar. More specific, let the similarity
measure σtrue(D, D′) be defined by the correlation of
the rankings given by the processes in P .

With this definition, we have reduced a problem of se-
lecting the most suitable KDD process for a given data
set to the search of the most similar dataset. A simple,
but computationally too expensive solution would be
to simply calculate σtrue. In order to find practically
feasible solution, we now address the learning task of
finding a similarity measure σ∗ that is defined on fea-
tures of the data set D only, i.e. that can be computed
without the execution of a KDD process, such that σ∗

mimics σtrue as closely as possible. The visualization
of the learning process is shown in Figure 4. To mea-
sure the agreement between rankings of two datasets,
denoted as σtrue we use Spearman’s rank correlation
coefficient (Neave & Worthington, 1992).
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Figure 4. Data sets similarity learning.

Algorithm 1 Distance Measure Learning

Input: similar S and dissimilar D pairs.
Initialise α with random values.
Compute g(A)
Minimize g(A) using Newton-Raphson method.
Output: α - weights vector.

4.7. Learning algorithm

In this work we used a learning algorithm proposed by
(Xing et al., 2003). For the similarity measure a few
data sets with known σtrue were used to define the
sets of truly similar and dissimilar datasets. Ordered
by σtrue the top k data set pairs are defined as the set
of similar example sets, while bottom k data set pairs
form the dissimilar example set.

The algorithm can be described as follows: For the
vector representation of the data we can define the
distance metric as:

d(x, y) = dA(x, y) = ||x − y||A =
√

(x − y)T A(x − y),

(12)

where A is positive semi-definite matrix, in other
words, a symmetric matrix with non negative eigen-
values. The goal is to minimize the distance between
similar pairs.

minA

∑

(xi,xj)∈S

||xi − xj ||
2
A. (13)

with the following constraint:

∑

(xi,xj)∈D

||xi − xj ||A ≥ 1 (14)

where S and D are the sets of similar and dissimilar
pairs respectively. We apply the case to learn a diago-
nal maxtrix A = diag(A11, A22, . . . , Ann). This prob-
lem is solved using Newton-Raphson method. The
summary of our approaches is given in Algorithm 1.

As a reference approach we directly use SVMs (Cortes
& Vapnik, Sept 1995) on the classification problem
defined by S and D.

5. Experiments

In this section we evaluate the effectiveness of the pro-
posed characteristics. Before the start of the evalu-
ation we have to determine the experimental setup.
First, a set of data sets is needed. Second, comput-
ing developed characteristics from chosen data sets as-
sumes that the ontology describing the attribute sets
is available. Third, we need a knowledge database
containing multiple data sets together with the qual-
ity measure of KDD processes that were applied to
these data sets. In order to facilitate the evaluation
of the proposed approach we limit the KDD processes
to a single classification algorithm. Note that as our
method does not use any properties of the process it-
self, the application to more complex KDD processes
is straight-forward.

5.1. Data Sets

Finding appropriate data sets for the evaluation of our
approach is a hard task, as the success of our approach
depends on the availability of a set of connected data
sets and a high-quality ontology to provide the nec-
essary semantics. On the one hand, standard data
sets usually do not come with ontologies, on the other
hand, in the domain where a high-quality ontology was
available to us (the ACGT ontology), legal and ethi-
cal restrictions limited our access to large enough data
sets. We addressed this problems in the following way.

The experiments were based on three “parent” data
sets, including two data sets from the UCI repository
(Asuncion & Newman, 2007) (ZOO, Cover Type) and
one real-world data set (Jelovsek et al., 1989) (TOX).

From these “parent” data sets, multiple data sets were
simulated by generating partial data sets.

Definition: Given a data set D = (A, T ), a data set
D′ = (A′, T ′) is called a partial data set of D if it was
induced from D by selecting several columns: A′ ⊂ A

and T ′ ⊂ T .

In total 57 partial data sets were created, including
17 for ZOO, 20 for TOX and 20 for the cover types
dataset. We use partial data sets for the evaluation
task to simulate a range of data sets in a limited re-
search domain. This situation can be found again in
the ACGT Project: patient data from different clinics
usually intersect in their attributes.

5.2. Ontologies

For each data set presented above an ontology describ-
ing its attributes was created by hand by extracting at-
tribute names from the data set, defining hierarchical
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data set Number of classes number of relations
ZOO 16 15
TOX 39 38
cover 73 72

Table 1. Ontologies statistics.

relations between the attributes, and defining relations
joining several attributes.

For the used data sets no other relations but hierar-
chical ones could be extracted. Therefore the ontology
was reduced to a taxonomy. Nevertheless, the pro-
posed characteristics can be applied to the data sets
containing other relations as well. Table 1 shows some
statistics of the developed ontologies.

5.3. Knowledge database

To create a knowledge database a total of five classifi-
cation algorithms have been applied to 57 partial data
sets. These algorithms are all based on different prin-
ciples: a model-free Nearest-neighbor, a probabilistic
Naive Bayes, a vector based Support Vector Machine,
rules based Decision Trees and Rules Learner. The
accuracy was estimated using 10-fold cross-validation.

5.4. Results

Three independent experiments, each over a different
set of data sets were performed. To understand the
influence of different characteristics they were divided
into three groups: meta data based (DM ), graph based
(DG) and combined (DC). For each measures group
the average correlation σ∗ , denoted as σ∗

SV M (for the
SVM learning algorithm) and σ∗

Opt (for the distance
learning algorithm), and the standard deviation (S),
were estimated separately. Higher values correspond
to the more correct prediction of σTrue and as a result
can provide correct selection of the most suitable KDD
process. For the performance comparison we use a
default learner, estimated by a so called ”take random
dataset” approach, where the user chooses a similar
data set randomly (labelled σr). Upper bounds were
estimated using the training dataset with best true
correlation σTrue (labelled σmax). All values have been
estimated using leave-one-out method. Table 2 sums
up the evaluation results.

From these results we observe that the distance metrics
learning algorithm (σOpt) produces a better prediction
than SVM Learner (σSV M ).

It can be also seen that proposed characteristics can
effectively approximate the σtrue. σOpt values for ZOO
and TOX datasets for the group of combined charac-

teristic DC are higher than for groups DG and DM ,
while for the cover data set the group of proposed
characteristics DG shows the best result. The aver-
age correlation between σtrue and σ∗ is far more than
the random default and close to the theoretical op-
timum. This shows that graph based characteristics
indeed improve the performance.

6. Summary and Conclusions

This paper presents a new approach for dataset de-
scription in order to assist the user in selecting the
most suitable KDD-process for the problem at hand.
Modeling of a dataset by a graph allowed us to ap-
ply graph mining methods to perform a comparison
of data sets. In total 5 topological and 6 structural
properties of the graph were proposed to describe the
data set. Two learning algorithms, SVM and a dis-
tance metric learning algorithm, were applied to find
the correlation between developed characteristics and
ranking of KDD processes.

Three independent experiments, each over a different
set of datasets, show that the new approach can effec-
tively approximate the optimal ranking of KDD pro-
cesses for the given data set. The average correlation
between learned and true similarity is far above the
random default and close to the theoretical optimum.
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