Concept Drift and the Importance of
Examples

Ralf Klinkenberg' and Stefan Riiping!

University of Dortmund
Computer Science Department, LS VIIT
44221 Dortmund, Germany

http://www-ai.cs.uni-dortmund.de/

Abstract. For many learning tasks where data is collected over an extended pe-
riod of time, its underlying distribution is likely to change. A typical example is
information filtering, i.e. the adaptive classification of documents with respect to
a particular user interest. Both the interest of the user and the document con-
tent change over time. A filtering system should be able to adapt to such concept
changes.

Examples may be important for different reasons. In case of a drifting concept,
the importance of an example obviously depends on its age. If a user is interested
in several topics, these may be of different importance to her/him. Hence the im-
portance of an example is influenced by the topic it belongs to. Of course these two
effects may cumulate.

In this paper we model the importance of an example by weighting its impor-
tance for the final decision function. This paper investigates how to handle these
two effects with support vector machines extending the approach of [11], which
showed that drifting concepts can be learned effectively and efficiently with little
parameterization. Several approaches addressing the different effects are compared
in experiments on real-world text data.

1 Introduction

Machine learning methods are often applied to problems, where data is col-
lected over an extended period of time. In many real-world applications this
introduces the problem that the distribution underlying the data is likely to
change over time. For example, companies collect an increasing amount of
data like sales figures and customer data to find patterns in the customer be-
havior and to predict future sales. As the customer behavior tends to change
over time, the model underlying successful predictions should be adapted
accordingly.

The same problem occurs in information filtering, i.e. the adaptive classi-
fication of documents with respect to a particular user interest. Information
filtering techniques are used, for example, to build personalized news filters,
which learn about the news-reading preferences of a user or to filter e-mail.
Both the interest of the user and the document content change over time. A
filtering system should be able to adapt to such concept changes.

2 Ralf Klinkenberg and Stefan Riiping

In this paper, we discuss several approaches to deal with the problem of
concept drift. The central question will be, how important older examples
are for predicting new instances of the possibly changed concept. Examples
may be important for different reasons. In case of a drifting concept, the
importance of an example obviously depends on its age. If a user is interested
in several topics, these may be of different importance to her/him. Hence the
importance of an example is influenced by the topic it belongs to. Of course
these two effects may cumulate.

We will extend the approach of [11] by using some special properties of
Support Vector Machines, that will prove useful in handling concept drift, for
example efficient performance estimation, transduction, and examples weight-
ing. A main goal will be to keep the learning algorithm as effectively, effi-
ciently, and with as little parameterization as possible. Several approaches
addressing the different effects are compared in experiments on real-world
text data.

2 Concept Drift

Throughout this paper, we study the problem of concept drift for the pattern
recognition problem in the following framework. Each example z = (z,y)
consists of a feature vector z € RY and a label y € {—1,+1} indicating its
classification. Data arrives over time in batches. Without loss of generality
these batches are assumed to be of equal size, each containing m examples.

B(1,1)5 w0 Z(1,m) > B(2,1)5 w00 F2mp * 775 AL +o5 Htgm) AL -5 HHim)

%3 denotes the j-th example of batch i. For each batch 7 the data is in-
dependently identically distributed with respect to a distribution Pr;(z,y).
Depending on the amount and type of concept drift, the example distribution
Pr;(x,y) and Pr;y; (z,y) between batches will differ. The goal of the learner
L is to sequentially predict the labels of the next batch. For example, after
batch ¢ the learner can use any subset of the training examples from batches
1 to t to predict the labels of batch ¢+ 1. The learner aims to minimize the cu-
mulated number of prediction errors. In machine learning, changing concepts
are often handled by time windows of fixed or adaptive size on the training
data [18,27,15,12] or by weighting data or parts of the hypothesis according
to their age and/or utility for the classification task [14,24]. The latter ap-
proach of weighting examples has already been used for information filtering
in the incremental relevance feedback approaches of [1] and [2]. In this paper,
the earlier approach maintaining a window of adaptive size is explored. More
detailed descriptions of the methods described above and further approaches
can be found in [9].

For windows of fixed size, the choice of a “good” window size is a com-
promise between fast adaptivity (small window) and good generalization in
phases without concept change (large window). The basic idea of adaptive

Concept Drift and the Importance of Examples 3

window management is to adjust the window size to the current extent of
concept drift.

The task of learning drifting or time-varying concepts has also been stud-
ied in computational learning theory. Learning a changing concept is infeasi-
ble, if no restrictions are imposed on the type of admissible concept changes,!
but drifting concepts are provably efficiently learnable (at least for certain
concept classes), if the rate or the extent of drift is limited in particular ways.

Helmbold and Long [4] assume a possibly permanent but slow concept
drift and define the extent of drift as the probability that two subsequent
concepts disagree on a randomly drawn example. Their results include an
upper bound for the extend of drift maximally tolerable by any learner and
algorithms that can learn concepts that do not drift more than a certain
constant extent of drift. Furthermore they show that it is sufficient for a
learner to see a fixed number of the most recent examples. Hence a window
of a certain minimal fixed size allows to learn concepts for which the extent
of drift is appropriately limited.

While Helmbold and Long restrict the extend of drift, Kuh, Petsche, and
Rivest [13] determine a maximal rate of drift that is acceptable by any learner,
i. e. a maximally acceptable frequency of concept changes, which implies a
lower bound for the size of a fixed window for a time-varying concept to be
learnable, which is similar to the lower bound of Helmbold and Long.

In practice, however, it usually cannot be guaranteed that the application
at hand obeys these restrictions, e.g. a reader of electronic news may change
his interests (almost) arbitrarily often and radically. Furthermore the large
time window sizes, for which the theoretical results hold, would be impracti-
cal. Hence more application oriented approaches rely on far smaller windows
of fixed size or on window adjustment heuristics that allow far smaller window
sizes and usually perform better than fixed and/or larger windows [27,15,12].
While these heuristics are intuitive and work well in their particular appli-
cation domain, they usually require tuning their parameters, are often not
transferable to other domains, and lack a proper theoretical foundation.

Sayed, Liu, and Sung [23] describe an approach to incrementally learning
support vector machines that handles virtual concept drift implied by incre-
mentally learning from several subsamples of a large training set, but they
do not address the problem of (real) concept drift addressed here.

3 Support Vector Machines

We use Support Vector Machines as our learning algorithm, because SVMs
have some very useful properties that can be exploited in our approach. The
theory of SVMs itself is well known (see [26]), therefore we will give only a

! E.g. a function randomly jumping between the values one and zero cannot be
predicted by any learner with more than 50% accuracy.

4 Ralf Klinkenberg and Stefan Riiping

short introduction of the concepts that are important with respect to our
work.

Support Vector Machines are based on the structural risk minimization
principle[26] of statistical learning theory. Statistical learning theory deals
with the question, how a function f from a class of functions (fu)aca can be
found, that minimizes the expected risk

Mﬂ=//LmNMMHWMH@ (1)

with respect to a loss function L, when the distributions of the examples
P(z) and their classifications P(y|z) are unknown and have to be estimated
from finitely many examples (x;,y;)ic1-

The SVM algorithm solves this problem by minimizing the regularized
risk Rreg[f], which is the weighted sum of the empirical risk Remp[f] with
respect to the data (z;,¥;)i=1..» and a complexity term ||w||?

Rreglf] = |lw|” + C - Remplf]- (2)

In their basic formulation, SVMs find a linear decision function y =
f(z) = sign(w - z + b) that both minimizes the prediction error on the train-
ing set and promises the best generalization performance. Geometrically the
principle of the SVM can be interpreted as finding a hyperplane in the ex-
ample space, that separates the positive and negative examples (minimizes
the error on the training set) with maximum margin (best generalization
performance), see Figure 1.

Fig. 1. Maximum margin hyperplane and margin m.

Given the examples (z1,y1),-..,(Zn,yn) the SVM solution is found by
solving the following optimization problem:

B(w,6,6) = Sw'w) +CY & @
i=1
— min

Concept Drift and the Importance of Examples 5

subject to

yi(wT$z’+b)Sl—fi,iZL...,n (4)
&E>0i=1,...,n (5)

The decision hyperplane is given by the normal vector w and the additive
constant b, such that f(z) = w?z+b. The variables &; are slack variables that
allow for a certain amount of misclassification in equation (4). In practice,
this optimization problem can be efficiently solved in its dual form

1 n n
P(a) = -3 Z Yiy;Ti - 5 + Zai (6)

i,j=1 i=1

— min
subject to
0<q;<C Vi= n (M)
a; =0 (8)
i=1

Here, the hyperplane is given by w = > | a;y;2;. The vectors z; that have
non-zero variables «; are called the Support Vectors.

3.1 Loss Functions

In equation (3), the empirical risk of the SVM solution is measured with
respect to a linear loss function, but the Support Vector algorithm is not
restricted to the case of linear loss functions, but can be extended to broader
classes of loss functions (e.g. see [22]). In particular, one can set an individual
weight w; to each example by replacing definition (3) by

B(w,6,6) = 5(w"w) + O wike (9)

i=1

This leads to the same dual formulation as before, except that equation (7)
is replaced by

0<ao; <w;C Vi=1...n (10)

The resulting decision function is biased towards examples with a higher
weight. The effect of this manipulation can be viewed as changing the prob-
ability distribution P(z) of the examples, placing more probability mass to
the examples with higher weight.

6 Ralf Klinkenberg and Stefan Riiping

3.2 SVMs for Text Classification

It was first noted by Joachims in [5], that SVMs are especially well suited
for text classification, because the complexity of a SVM hyperplane depends
on the margin it separates the data with and not on the dimensionality of
the input space. Text data typically has a very high dimension (more than
10000) and very few irrelevant features. SVMs can efficiently learn with all
features in the data set, so they are much better suited than other algorithm
that demand complicated feature selection. Experience shows Support Vector
Machines are currently the most successful tool for text classification [8].

4 The Importance of Examples

In a learning problem with drifting concepts as introduced in section 2, we
face the problem to decide, how much information from past examples can be
used to find a hypothesis that is adequate to predict the class information of
future data. Since we do not know, if and when a concept drift happens, there
are two opposing effects: On the one hand, the older the data is, the more
likely it is that its probability distribution differs from the current distribution
that underlies the process, so that the data may be misleading. On the other
hand, the more data is used in the learning process, the better the results are
if no concept drift occurred since the data arrived.

In this section we present different approaches for learning drifting con-
cepts, that differ in the way previous examples are used to construct a new
hypothesis. All our approaches share the assumption, that concept drifts do
not reverse, i.e. newer examples are always more important than older ones.

This assumption was implemented by a common scheme for estimating
the performance of a learner: In all experiments, the performance was only
calculated on the last batch of data, regardless of how many batches were
used in training. To get a good estimation of the performance but still be
efficient, we used the so-called £a-estimator of [6], which estimates the leave-
one-out-error of a SVM based solely on the one SVM solution learned with
all examples.

4.1 Example Selection

One of the simplest scenarios for detecting concept drift are concept drifts
that happen very quickly between relatively stable single concepts. For ex-
ample, imagine a user of an information filtering system, who wants to buy
a new car: at first, he is interested in information about all sorts of cars, but
after he made his decision and bought the car, he is only interested in infor-
mation about this special type of car. This may be more accurately called
“concept change” or “concept shift” rather than “concept drift”.

In this scenario, the problem of learning drifting concepts can be ap-
proached as the problem of finding the time point ¢ at which the last concept

Concept Drift and the Importance of Examples 7

change happened. After that, a standard learning algorithm for fixed con-
cepts can be used to learn from the data since ¢. Similarly, other concept
drift scenarios can be handled by using a time window on the training data,
assuming that the amount of drift increases with time and hence focusing on
the last n training examples.

The shortcomings of previous windowing approaches are that they ei-
ther fix the window size [18] or involve complicated heuristics [27,15,12]. A
fixed window size makes strong assumptions about how quickly the concept
changes. While heuristics can adapt to different speed and amount of drift,
they involve many parameters that are difficult to tune.

In [11], Klinkenberg and Joachims presented an approach to selecting an
appropriate window size that does not involve complicated parameterization.
They key idea is to select the window size so that the estimated generalization
error on new examples is minimized. To get an estimate of the generalization
error, a special form of {a-estimates [6] is used. £a-estimates are a particularly
efficient method for estimating the performance of an SVM.

The window adaptive window approach employs these estimates in the
following way. At batch ¢, it essentially tries various window sizes, training a
SVM for each resulting training set.

Zg1)s +++» Ztgm) (11)
1)y +++5 At—1gm) A1) +++5 Htym) (12)
Zp-21y -+ Hp-2mp Zp—L1)s -+ Hp—Lymh Ztl) -+ Atgm) (13)

For each window size it computes a {a-estimate based on the result of train-
ing, considering only the last batch for the estimation, that is the m most
recent training examples 2y, .., Zgm)

[{i : 1<i<m A (agy RA+E¢) > 1}
m

BErrl (he)= (14)
This reflects the assumption that the most recent examples are most similar
to the new examples in batch ¢ + 1. The window size minimizing the £a-
estimate of the error rate is selected by the algorithm and used to train a
classifier for the current batch.

The window adaptation algorithm can be summarized as follows:

e input: Sipqin training sample consisting of ¢ batches containing

m (labeled) examples each
e for he {0,...,t -1}
— train SVM on examples 2 i), ---; Zgm)
— compute {a-estimate on examples Z1), -+ Atm)
e output: window size which minimizes {a-estimate

8 Ralf Klinkenberg and Stefan Riiping

4.2 Example Weighting

In information filtering systems, the user may change his interests in a specific
topic slowly. In this case, one cannot find a specific time point, at which old
examples become irrelevant, but the amount of information one can draw
from a certain example will slowly decrease over a longer amount of time.
Therefore, the sharp distinction between examples that are kept and examples
that are left out in the learning process does not sufficiently represent the
process behind the data.

The decreasing importance of older examples can be modeled by assigning
a weight w; to each example z; and by learning a decision function with
respect to these weights, for example by the method shown in section 3.1.

But how to choose these weights? Of course, a weighting scheme must
take into account the variability of the target concept and be adaptive with
respect to the actual performance of the learner.

In our approach, the criterion to select the optimal weights is again the
estimated performance of the learner on the newest batch of data. This guar-
antees, that the temporal order of the examples is respected by the weighting
schemes (an example from a newly emerging concept looks like an outlier
with respect to the old data, but of course is not one but highly informative).

In the weighting scheme, we select the weights of the examples solely
based on their respective age, for example using a exponential aging function
wy(x) = exp(—At), where x was found ¢ time steps ago. The larger A is, the
sooner an examples becomes irrelevant. In the extreme cases, for A — oo we
learn only on the newest examples and for A = 0 all examples share an equal
weight.

To be adaptive, we start several learning runs for each new batch with
different values of A and pick the best A at each batch by estimating the
performance of the learning result on the last batch of data. In a way, this
algorithm is a continuous version of the algorithm of [11] that was presented in
the last section: instead of a hard cut to remove uninformative examples, the
contribution of these examples to the final learning result is slowly reduced.

4.3 Local models

A special characteristic of text classification is the high dimensionality of the
examples compared to the number of examples, which makes the examples
stand almost orthogonal to each other. This is the reason why often in text
classification tasks the classes are linearly separable.

In the concept drift setting, we have a set of topics and assume that
the user is interested in a specific subset of topics. In experiments with this
setting, one can observe that a subset of multiple topics can be separated
from the rest of the data just as good as a single topic. Accordingly, one can
also observe, that a SVM classifier that is trained in a concept drift setting,
even if it is trained on a small subset of the data, has a low error on a test set

Concept Drift and the Importance of Examples 9

veight weight
ey,
batch 1 bechn time betch 1 bachn time
Example Selection Globa Weighting Scheme
veight weight
Je—m —y
beteh 1 bechn time betch 1 bechn time
Local Selection Scheme Loca Weighting Scheme

Fig. 2. Comparison of the example weights in the four weighting schemes.

from the same examples distribution (in our experiments, below 10%). Vice
versa, if a concept drift occurs, i. e. if the users interest in a topic changes,
almost all of the examples from this topic will be classified falsely and the
error rate will grow considerably (the increase depending on the size of this
topic in relation to the other topics). A good example of this behavior can
be seen in Figure 3. In this setting, we can see a considerable increase in the
classification error after a concept drift occurs at batch 10. In this example,
the classifier was re-trained for each new batch on all examples prior to the
new batch.

0 5 10 15 20
Batch No.

Fig. 3. Typical Classification Error in a Concept Drift Setting.

This observations lead us to the local-model approach: In the first step,
a classifier is learned on only the most recent batch of data. Of course, in
most cases this classifier will not be as good as it can be, but we can be sure

10 Ralf Klinkenberg and Stefan Riiping

that it always will be the classifier that is most up-to-date with the drifting
concept. Now we can use this classifier to estimate, which batches of data
were generated from the same model (i. e. the same users interest) as the
recent batch, by comparing the estimated leave-one-out error of the classifier
on the recent batch to its test error on the other batches. The higher the
error, the more unlikely is the data given the model. Note that at this point,
it is important to use the leave-one-out-estimation and not the training error
to avoid errors by over-fitting the most recent data.

In a second step, the information about the classifiers error can now be
used to build a training set for the actual classifier. There are two ways to
use this information: We can either exclude all batches from the new training
set, which have a significantly higher classification error than the most recent
batch. By this, we hope to train the final classifier on all data generated
by the current model in a way similar to the examples selection scheme in
section 4.1. We can also use the error information to adjust the weights for
the examples on each batch in a way similar to section 4.2. The higher the
error of the batch, the lower the weights will be. We call this approach the
local weighting scheme, because here the weights are adjusted locally on each
batch in contrast to the global weighting scheme in section 4.2. Of course,
we can also combine both weighting schemes by multiplying the weights of
each example. In the spirit of Bayesian statistics, this combines an a-priori
assumption about the importance of the examples (the global weight) with
an a-posteriori update (performance measure in the local weight).

4.4 Transduction

Transductive learning [26] differs from inductive learning in that its goal is
not to find a hypothesis which is optimal with respect to all data, i.e. the real
probability distribution of the examples, but to only find a hypothesis which is
optimal for a given test set. That is, transductive learning does not only learn
from a given example set, but also from a set of observations (without given
classification), whose values are to be predicted. Transduction can improve
the learners performance considerably, since a much better estimation of the
observations distribution P(z) can be obtained from the training- and test
set together (of course, P(y|z) can be only estimated on the training set).

In [7], Joachims shows that the principle of transductive learning is very
well suited for the problem of text classification. For example, in information
retrieval systems the collection of all available documents is usually known,
but the user can only label a very small fraction of all documents as be-
ing relevant or not relevant. In the same publication, Joachims also shows
how transductive learning can be efficiently performed with Support Vector
Machines.

Empirical results (see e.g. [20], [7], [L7]) show that unlabeled data can help
to significantly improve the performance of text classifiers, especially in case
of few labeled examples. As pointed out in [7], it is well known in information

Concept Drift and the Importance of Examples 11

retrieval that words in natural language occur in strong co-occurence patterns
(see [25]). While some words are likely to occur in one document, others are
not. This type of information is independent of the document labels and can
be exploited, if unlabeled data is used.

Transduction and Concept Drift Transductive learning has also been applied
to the setting of concept drift by Klinkenberg in [10] using the following
idea. At each batch, there are usually only comparatively few observations,
for which predictions need to be made. Since the performance improvements
achieved by transduction are the more significant the more data is used, only
using such a small set of unlabeled data does not seem optimal. But the
out-of-date examples, whose labels do no longer seem to be representative
enough for the current concept, and may be some other unlabeled examples
from the same source are still available. Assuming that the process that
generated the data (e.g. the news stream) is still approximately the same
and that only the user’s preferences in what is relevant to him or her and
what not changed, the z-values of this examples can be used as unclassified
observation for transductive learning. In this way, even for very new topics
with little examples, a large collection of documents can be used to estimate
P(z).

Klinkenberg [10] describes an extension of [11] (see also section 4.1) ex-
ploiting unlabeled and old no longer reliably labeled data in such a transduc-
tive way. Its basic idea is to first use the algorithm described in [11] to find a
good window size on the labeled training data, wingspeieq, using Ea-estimates
for an inductive SVM, and to then use an almost identical algorithm to de-
termine a good window size on the unlabeled data, win,miapered, o0 the same
stream of documents using £a-estimates for a transductive SVM to estimate
the prediciton error on the test set, leaving the window size winispereq Un-
changed.

Why are separate window sizes winygpeieq and WiNynigbeleq Maintained
for labeled and unlabeled data respectively? The probability P(y|z), which
describes the user interest, i.e. the drifting concept, and which is captured
by the labeled data, may change at an other rate than the probability P(z),
which describes the distribution of documents identically underlying both
the labeled and unlabeled examples independent of their labels. Hence it is
sensible to use separate windows to obtain the best information from both
probability distributions.

The algorithm to find the window for the unlabeled data (and the final
hypothesis) can be summarized as follows:

e input: Sipqin training sample consisting of ¢ batches containing
m' examples each and Sis; test sample
e for h€ {0,..,t -1}
— train TSVM on examples 2 py,..., %gn/), considering all training
examples outside the window of size winjgpeleq s unlabeled,
and on the test examples 213y, ---; %4 1ym)

12 Ralf Klinkenberg and Stefan Riiping

— compute §a—estimate on examples L+ 110 -+ Zt+1m)
e output: window size which minimizes {q-estimate (WiNynigbeled)

Other approaches for exploiting unlabeled data: Besides of transduction, there
are also other (semi-)supervised approaches for exploiting unlabeled data.
Nigam et al. [19,20] use a multinomial Naive Bayes classifier and incorporate
unlabeled data using the EM-algorithm. One problem with using Naive Bayes
is that its independence assumption is clearly violated for text. Nevertheless,
using EM showed substantial improvements over the performance of a regular
Naive Bayes classifier. Lanquillon [17] describes an extension of this EM-based
framework to an EM-style framwork for arbitrary (text) classifiers.

Blum and Mitchell’s work on co-training [3] uses unlabeled data in a par-
ticular setting. They exploit the fact that, for some problems, each example
can be described by multiple representations. WWW-pages, for example, can
be represented as the text on the page and/or the anchor texts on the hy-
perlinks pointing to this page. Blum and Mitchell develop a boosting scheme
which exploits a conditional independence between these representations.

One of the situations, in which a user may change his or her preferences,
may occur, when the documts available to the user change, i.e. when the
distribution P(z) changes. Lanquillon [16] presents an approach to make use
of unlabeled data for the detection of concept drift in such situations.

4.5 Multiple Topics

Until now, we only talked about relevant and irrelevant examples without any
further distinction. But in reality, a set of documents (news article, newsgroup
postings, emails,...) will contain a whole set of topics and there usually will
be more than one relevant topic, for example business email and private
email in contrast to spam (of course, in reality the topics will be much more
fine-grained).

In the usual task of text classification with fixed concepts, this is not a
major problem, because it can be observed that due to the very high di-
mension it is usually possible to separate multiple relevant topics from the
remaining texts as well as it is with single topics.

The difference of multiple topics with concept drift is, that different topics
usually will not become relevant or irrelevant at the same time. For examples,
if the user takes another job, the relevance of a certain business email may
drastically change, but the relevance of private email will still be the same.

In this situation it may help to cluster the documents beforehand and
to learn on each cluster separately. The final decision rule will be to mark
an examples as relevant, if any of the individual decision rules marks this
example as relevant.

The performance of this approach depends largely on the quality of the
clustering algorithms results. Not only do we need meaningful clusters, we
also need clusters that remain stable over time. We can hope to find these

Concept Drift and the Importance of Examples 13

clusters, if the distribution P(z) remains constant and only P(y|z), i.e. the
users interest, changes. In all other cases, the clustering will have to be re-
peated from time to time.

5 Experiments

5.1 Experimental Setup

In order to evaluate the learning approaches for drifting concepts proposed
in this paper, the four simple data management approaches are compared to
the adaptive time window approach and the example weighting and selection
strategies, all using SVMs as their core learning algorithm:

o “Full Memory”: The learner generates its classification model from all
previously seen examples, i.e. it cannot “forget” old examples.

o “No Memory”: The learner always induces its hypothesis only from the
most recent batch. This corresponds to using a window of the fixed size
of one batch.

e Window of “Fized Size”: A time window of the fixed size of three batches
is used on the training data.

e Window of “Adaptive Size”: The window adjustment algorithm [11] pro-
posed in section 4.1 adapts the window size to the current concept drift
situation.

o “Global Weights”: The examples of old batches are weighted by an expo-
nential weighting function according to their age, so that older example
receive lower weights (see section 4.2).

o “Local Weights”: The examples of old batches are weighted according to
their fit to a model learned on the most recent batch only, i.e. the weight
of an old batch is inversely proportional to the error rate of that batch on
this model (wiyeqr(batch) := 1 — 5 x error(batch) — 0.1, where the weight
is set to one for error rates below 10% and to zero for error rates above
30%, see section 4.2).

o “Combined Weights”: The examples are weighted by the product of the
global and the local weight of their batch.

o “Zero-One-Weights” or “Batch Selection”: The batches producing an er-
ror less than twice the estimated error of the newest batch, when applied
to a model learned on the newest batch only, receive a weight of one. The
weight of all other examples is set to zero.

The experiments are performed in an information filtering domain, a typ-
ical application area for learning drifting concept. Text documents are rep-
resented as attribute-value vectors (bag of words model), where each distinct
word corresponds to a feature whose value is the “ltc”-TF/IDF-weight [21]
of that word in that document. Words occurring less than three times in the
training data or occurring in a given list of stop words are not considered.

14 Ralf Klinkenberg and Stefan Riiping

Table 1. Relevance of the categories in the concept change scenarios A, B, and C.

Sce-|Cate{Probability of being relevant for a document of the specified category at the specified time step (batch
pariglgory|| 0 |1 |2 |3 |4 |5 |6 |7 |8 |9 [10 |11 [12 |13 |14 [15 |16 |17 [18 | 19
A 1 (.0 1.0 1.0 1.0 1.0 1.0 {1.0 |1.0 1.0 {1.0 [0.0 |0.0 (0.0 |0.0 0.0 [0.0 |0.0 (0.0 [0.0 0.0
3 (/0.0 {0.0 {0.0 |0.0 0.0 0.0 |0.0 (0.0 |0.0 0.0 1.0 1.0 |1.0 1.0 1.0 |1.0 |1.0 1.0 |1.0 1.0
B 1 |1.0 1.0 1.0 1.0 1.0 1.0 |1.0 |1.0 [0.8 0.6 (0.4 |0.2 0.0 0.0 (0.0 |0.0 |0.0 0.0 0.0 0.0
3 (/0.0 {0.0 {0.0 |0.0 0.0 0.0 |0.0 (0.0 0.2 |0.4 (0.6 [0.8 |1.0 (1.0 1.0 |1.0 |1.0 1.0 |1.0 1.0
C 1 (.0 1.0 1.0 1.0 1.0 1.0 |2.0 |1.0 1.0 (0.0 0.0 1.0 1.0 |1.0 1.0 1.0 |1.0 1.0 1.0 1.0
3 (/0.0 {0.0 {0.0 |0.0 0.0 0.0 |0.0 (0.0 [0.0 |1.0 1.0 [0.0 |0.0 (0.0 |0.0 |0.0 |0.0 0.0 [0.0 0.0

Each document feature vector is normalized to unit length to abstract from
different document lengths.

The performance of a classifier is measured by the three metrics predic-
tion error, recall, and precision. Recall is the probability, that the classifier
recognizes a relevant document as relevant. Precision is the probability, that
a document classified as relevant actually is relevant. All reported results are
estimates averaged over ten runs.

The experiments use a subset of 2608 documents of the data set of the
Text REtrieval Conference (TREC) consisting of English business news texts.
Each text is assigned to one or several categories. The categories considered
here are 1 (Antitrust Cases Pending), 3 (Joint Ventures), 4 (Debt Reschedul-
ing), 5 (Dumping Charges), and 6 (Third World Debt Relief). For the experi-
ments, three concept change scenarios are simulated. The texts are randomly
split into 20 batches of equal size containing 130 documents each.? The texts
of each category are distributed as equally as possible over the 20 batches.

Table 1 describes the relevance of the categories in the three concept
change scenarios A, B, and C. For each time step (batch), the probability
of being relevant (interesting to the user) is specified for documents of cate-
gories 1 and 3, respectively. Documents of the classes 4, 5, and 6 are never
relevant in any of these scenarios. In the first scenario (scenario A), first
documents of category 1 are considered relevant for the user interest and all
other documents irrelevant. This changes abruptly (concept shift) in batch
10, where documents of category 3 are relevant and all others irrelevant. In
the second scenario (scenario B), again first documents of category 1 are con-
sidered relevant for the user interest and all other documents irrelevant. This
changes slowly (concept drift) from batch 8 to batch 12, where documents of
category 3 are relevant and all others irrelevant. The third scenario (scenario
C) simulates an abrupt concept shift in the user interest from category 1 to
category 3 in batch 9 and back to category 1 in batch 11.

% Hence, in each trial, out of the 2608 documents, eight randomly selected texts
are not considered.

Concept Drift and the Importance of Examples 15

Table 2. ICML-2000: Error, accuracy, recall, and precision of all window man-
agement approaches for all scenarios averaged over 10 trials with 20 batches each
(standard sample error in parentheses).

Full No | Fixed |Adaptive
MemoryMemory| Size Size

Bcenario A"

Erron|20.36% | 7.30% | 7.96% || 5.32%
(4.21%) (1.97%) (2.80%) (2.29%)
Recall|51.69% | 74.42% | 77.64% || 85.35%
(8.37%) (4.61%) (6.07%)|| (4.93%)
Precision||64.67% |91.29% |87.73% || 91.61%

(8.38%) (5.10%) (5.93%)| (5.11%)

Scenario B
Erron|20.25%| 9.08% | 8.44% | 7.56%
(3.56%) (1.57%) (2.00%)| (1.89%)
Recall|49.35% (67.22% | 73.85% || 76.70%
(7.01%) (5.04%) (5.51%)| (5.42%)
Precision|65.09% | 88.86% |87.19% || 88.48%
(6.80%) (3.67%) (4.18%)| (3.89%)

Scenario C
Erron| 7.74% | 8.97% |10.17%| 7.07%
(3.05%) (2.84%) (3.30%)| (3.16%)
Recall|76.54% |63.68% [68.18% || 78.17%
(6.26%) (5.27%) (7.05%)| (6.34%)
Precision||83.15% |87.67% | 79.00% || 87.38%
(6.69%) (7.06%) (8.09%)| (6.99%)

5.2 Experimental Results

TO DO:

e Parameter-Variationen mySVM (C = 1,10,100,1000) (linearer Kernel
= std. for TCat) (lambda in der Gewichtungsfunktion erp(-lambda *
age[batches]) automatisch aus 0.01, 0.1, 0.2, 0.4, 0.6, 1.0, 2.0, 4.0 bes-
timmt) (exponential weight decay)

16 Ralf Klinkenberg and Stefan Riiping

Table 3. Daimler-WS-2002: Error, accuracy, recall, and precision of all window
management approaches for all scenarios averaged over 10 trials with 20 batches
each (standard sample error in parentheses).

Full No Fixed [Adaptive
MemoryMemory| Size Size

Scenario A
Erron|xx.xx%| xxx% | x.xx% || x.xx%
(x.xx%) (x.xx%) (x.xx%)| (x.xx%)
Recall |xx.xx% | xx.xx% | xx.xx% || xx.3%x%
(x.xx%) (x.xx%) (x.xx%)| (x.xx%)
Precision|| xx.xx% | xx.xx% | xx.xx% || xx.xx%

(x.xx%) (x.xx%) (x.xx%)| (x.xx%)

Scenario B
Erron|xx.xx%| x.xx% | x.xx% || x.xx%
(x.xx%) (x.xx%) (x.xx%)| (x.xx%)
Recall|xx.xx%| xx.xx% | xx.xx% || xx.3x%
(x-xx%) (x.xx%) (x.xx%)| (x-xx%)
Precision|| xx.xx% | xx.xx% | xx.xx% || xx.xx%

(x.xx%) (x.xx%) (x.xx%)| (x.xx%)

Scenario C

Erronf|xx.xx%| x.xx% | x.xx% || x.xx%
(x.xx%) (x.xx%) (x.xx%)| (x.xx%)
Recall|xx.xx%| xx.xx% | xx.xx% || xx.xx%
(x.xx%) (x.xx%) (x.xx%)| (x.xx%)
Precision|| xx.xx% | xx.xx% | xx.xx% || xx.xx%

(x.xx%) (x.xx%) (x.xx%)| (x.xx%)

e Tabelle mit Error, Recall, Preccision, evtl. F1, std.dev.

o Plot ueber Zeit (Batches), a la ICML-2000: FullMem, NoMem, FizedSize,
AdaptiveSize, (ZeroOneWeight)
Scen. A+B+C

e Plot ueber Zeit (Batches), a la ICML-2000: (AdaptiveSize), ZeroOne Weight,
Ezpo.Local, Expo.Global, Expo.Combi
Scen. A+B+C

As an alternative to the exponential weighting function used for the ex-
ample weighting approaches in the experiments described above, one may
use different functions. In order to assess the importance of this choice,

Concept Drift and the Importance of Examples 17

we also tried the same experiments using a sigmoidal weighting function
instead the exponential one. Assuming that the batches are consecutively
numbered with increasing numbers and that the newest batch of labeled
examples has the number ty, the weight of an old batch with the number
t < to is given by the function tanh((t — a)/b) + 1), where the best com-
bination of the two parameters a and b is automatically selected from the
following two value sets a € {1.00 x to,0.85 * to,0.68 * to,0.50 * to} and
b € {0.01 x t9,0.10 * tp,0.30 * tg,0.60 * to,5.00 x to}, so that the expected
error of the final model learned on all batches is minimized on the newest
batch. Interestingly, the results for the sigmoidal weighting scheme do not
significantly differ from those of the exponential weighting scheme.

Summarizing the results of the concept drift experiments in this infor-
mation domain, one can observe that example selection by an adaptive time
window or a zero-one-weighting scheme seems to work better than a grad-
ual weighting scheme depending on the age of and/or performance on the
training examples.

0.5 T T T T T T T T
No Memory —+—
X, Full Memory ---x---
0.45 % Fixed Size ---*--- 4

Error

Batch

Fig. 4. Classification Errors of the Trivial Approaches on each Batch in Scenario
A.

18 Ralf Klinkenberg and Stefan Riiping

045 T T T T T T T T
No Memory —+—
Py Full Memory --—-x---
S Fixed Size ---*---

04 - AR S e

Error

8 10 12 14 16 18
Batch

Fig. 5. Classification Errors of the Trivial Approaches on each Batch in Scenario
B.

6 Summary and Conclusions

In this paper, we proposed several methods for handling concept drift with
support vector machines using different strategies to account for the different
importance of examples to the current target concept to be learned, where
the importance of examples may depend on its age or its topic, and where
also unlabeled documents may have an impact.

We extended the approach of [11] by using some special properties of
SVMs useful in handling concept drift, for example efficient performance
estimation, transduction, and examples weighting, keeping the learning algo-
rithm as effectively, efficiently, and with as little parameterization as possible.
Several approaches addressing the different effects were compared in experi-
ments on real-world text data.

Acknowledgments

The financial support of the Deutsche Forschungsgemeinschaft (Collabora-
tive Research Centers SFB 475, "Reduction of Complexity for Multivariate
Data Structures”, and SFB 531, ” Computational Intelligence”) is gratefully
acknowledged.

Error

Concept Drift and the Importance of Examples 19

0.5 T T T T T T T T
No Memory —+—
x Full Memory ---x---
0.45 |- %x Fixed Size ---*--

Batch

Fig. 6. Classification Errors of the Trivial Approaches on each Batch in Scenario

C.

References

. James Allan. Incremental relevance feedback for information filtering. In H. P.

Frei, editor, Proceedings of the Nineteenth ACM Conference on Research and
Development in Information Retrieval, pages 270-278, New York, 1996. ACM
Press.

. Marko Balabanovic. An adaptive web page recommendation service. In W. L.

Johnson, editor, Proceedings of the First International Conference on Au-
tonomous Agents, pages 378-385, New York, 1997. ACM Press.

. Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with

co-training. In Annual Conference on Computational Learning Theory (COLT-
98), 1998.

. David P. Helmbold and Philip M. Long. Tracking drifting concepts by mini-

mizing disagreements. Machine Learning, 14:27-45, 1994.

T. Joachims. Text categorization with support vector machines: Learning with
many relevant features. In Claire Nédellec and Céline Rouveirol, editors, Pro-
ceedings of the European Conference on Machine Learning, pages 137 — 142,
Berlin, 1998. Springer.

T. Joachims. Estimating the generalization performance of a SVM efficiently. In
Proceedings of the Seventeenth International Conference on Machine Learning,
San Francisco, 2000. Morgan Kaufman.

20

Error

Ralf Klinkenberg and Stefan Riiping

0.5 T T T T T

Adap{ive Windov:/ _
Batch Selection ---x---

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1k,

Batch

Fig. 7. Classification Errors of the Batch Selection Approaches on each Batch in
Scenario A.

10.

11.

12.

. Thorsten Joachims. Transductive inference for text classification using support

vector machines. In International Conference on Machine Learning (ICML),
Bled, Slowenien, 1999.

. Thorsten Joachims. The Mazimum-Margin Approach to Learning Text Classi-

fiers: Methods, Theory, and Algorithms. PhD thesis, Fachbereich Informatik,
Universitat Dortmund, 2001.

. Ralf Klinkenberg. Maschinelle Lernverfahren

zum adaptiven Informationsfiltern bei sich veraindernden Konzepten. Masters
thesis, Fachbereich Informatik, Universitdt Dortmund, Germany, feb 1998.
Ralf Klinkenberg. Using labeled and unlabeled data to learn drifting con-
cepts. In Miroslav Kubat and Katharina Morik, editors, Workshop notes of
the IJCAI-01 Workshop on Learning from Temporal and Spatial Data, pages
16-24, Menlo Park, CA, USA, 2001. IJCAI, AAAT Press. Held in conjunction
with the International Joint Conference on Artificial Intelligence (IJCAI).
Ralf Klinkenberg and Thorsten Joachims. Detecting concept drift with support
vector machines. In Proceedings of the Seventeenth International Conference
on Machine Learning (ICML), pages 487-494, San Francisco, CA, USA, 2000.
Morgan Kaufmann.

Ralf Klinkenberg and Ingrid Renz. Adaptive information filtering: Learning in
the presence of concept drifts. In M. Sahami, M. Craven, T. Joachims, and
A. McCallum, editors, Workshop Notes of the ICML-98 Workshop on Learning
for Text Categorization, pages 33—40, Menlo Park, CA, USA, 1998. AAAT Press.

Error

Concept Drift and the Importance of Examples 21

Adap{ive Windov:/ _
Batch Selection ---x---

0 2 4 6 8 10 12 14 16 18
Batch

Fig. 8. Classification Errors of the Batch Selection Approaches on each Batch in
Scenario B.

13

14.

15.

16.

17.

18.

19.

A. Kuh, T. Petsche, and R.L. Rivest. Learning time-varying concepts. In
Advances in Neural Information Processing Systems, volume 3, pages 183-189,
San Mateo, CA, USA, 1991. Morgan Kaufmann.

Gerhard Kunisch. Anpassung und Evaluierung statistischer Lernverfahren zur
Behandlung dynamischer Aspekte in Data Mining. Masters thesis, Fachbereich
Informatik, Universitdt Ulm, Germany, jun 1996.

Carsten Lanquillon. Dynamic Neural Classification. Masters thesis, Fachbere-
ich Informatik, Universitdt Braunschweig, Germany, oct 1997.

Carsten Lanquillon. Information filtering in changing domains. In T. Joachims,
A. McCallum, M. Sahami, and L. Ungar, editors, Working Notes of the IJCAI-
99 Workshop on Machine Learning for Information Filtering, pages 41-48,
Stockholm, Sweden, August 1999.

Carsten Lanquillon. Partially Supervised text Classification: Combining La-
beled and Unlabeled Documents Using an EM-like Scheme. In Ramon Lépez
de Mantaras and Enric Plaza, editors, Proceedings of the 11th Conference on
Machine Learning (ECML 2000), volume 1810 of LNCS, pages 229 — 237.
Springer Verlag Berlin, Barcelona, Spain, 2000.

Tom Mitchell, Rich Caruana, Dayne Freitag, John McDermott, and David
Zabowski. Experience with a learning personal assistant. Communications
of the ACM, 37(7):81-91, jul 1994.

K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Learning to classify text
from labeled and unlabeled documents. In Proceedings of the AAAI-98, 1998.

22

Error

Ralf Klinkenberg and Stefan Riiping

0.5 T T T T T

Adap{ive Windov:/ _
Batch Selection ---x---

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

Batch

Fig. 9. Classification Errors of the Batch Selection Approaches on each Batch in
Scenario C.

20.

21.

22.

23.

24.

25.

26.
27.

Kamal Nigam, Andrew McCallum, Sebastian Thrun, and Tom Mitchell. Text
Classification from Labeled and Unlabeled Documents using EM. Machine
Learning, 39(2/3):103 — 134, 2000.

G. Salton and C. Buckley. Term weighting approaches in automatic text re-
trieval. Information Processing and Management, 24(5):513-523, 1988.

A. Smola, B. Scholkopf, and K.-R. Miiller. General cost functions for support
vector regression. In L. Niklasson, M. Boden, and T. Ziemke, editors, Proceed-
ings of the 8th International Conference on Artificial Neural Networks, 1998.
Nadeem Ahmed Syed, Huan Liu, and Kah Kay Sung. Handling concept drifts in
incremental learning with support vector machines. In Proceedings of the Fifth
International Conference on Knowledge Discovery and Data Mining, New York,
1999. ACM Press.

Charles Taylor, Gholamreza Nakhaeizadeh, and Carsten Lanquillon. Structural
change and classification. In G. Nakhaeizadeh, I. Bruha, and C. Taylor, ed-
itors, Workshop Notes of the ECML-97 Workshop on Dynamically Changing
Domains: Theory Revision and Context Dependence Issues, pages 67-78, apr
1997.

C. van Rijsbergen. A theoretical basis for the use of co-occurrence data in
information retrieval. Journal of Documentation, 33(2):106-119, June 1977.
V. Vapnik. Statistical Learning Theory. Wiley, Chichester, GB, 1998.
Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept
drift and hidden contexts. Machine Learning, 23(2):69-101, 1996.

Concept Drift and the Importance of Examples 23

05 T T T T T T R T
Global Weights —+—
Local Weights ---x---
0.45 ~ Combined Weights ---*---

0.4

0.35

0.3

Error
o
N
(9]

0.2

0.15

0.1

Batch

Fig. 10. Classification Errors of the Weighting Approaches on each Batch in Sce-
nario A.

24 Ralf Klinkenberg and Stefan Riiping

0.4 T T T T T

Global Weights —+—
Local Weights ---x---
X Combined Weights ---%---

0.35

0.3

0.25

0.2

Error

0.15

0.1

0.05

O 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18
Batch

Fig. 11. Classification Errors of the Weighting Approaches on each Batch in Sce-
nario B.

Concept Drift and the Importance of Examples 25

05 T T T T T T R T
Global Weights —+—
X Local Weights ---x---
0.45 Combined Weights ---*--- |

0.4

0.35

0.3

Error
o
N
(9]

0.2

0.15

0.1

Batch

Fig. 12. Classification Errors of the Weighting Approaches on each Batch in Sce-
nario C.

26 Ralf Klinkenberg and Stefan Riiping

05 T T T T T T T T
Fixed Memory —+—
Batch Selection ---x---

0.45 - Combined Weights ---*---
0.4
0.35
0.3

0.25

Error

0.2

0.15

0.1

Batch

Fig. 13. Classification Errors of the Best Approaches of each Type on each Batch
in Scenario A.

Concept Drift and the Importance of Examples

27

0.3

0.25

0.2

Error

0.15

0.1

0.05

Fi;(ed Memoriz _
Batch Selection ---x---
Combined Weights ------

Batch

10

18

Fig. 14. Classification Errors of the Best Approaches of each Type on each Batch

in Scenario B.

Ralf Klinkenberg and Stefan Riiping

28

Fixed Memory —+—

Batch Selection ---x---
Combined Weights --

0.5

0.45

Jou3g

Batch

Fig. 15. Classification Errors of the Best Approaches of each Type on each Batch

in Scenario C.

