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Abstract Subgroup discovery is a Knowledge Discovery task that aims at finding
subgroups of a population with high generality and distributional unusualness. While
several subgroup discovery algorithms have been presented in the past, they focus on
databases with nominal attributes or make use of discretization to get rid of the numer-
ical attributes. In this paper, we illustrate why the replacement of numerical attributes
by nominal attributes can result in suboptimal results. Thereafter, we present a new
subgroup discovery algorithm that prunes large parts of the search space by exploiting
bounds between related numerical subgroup descriptions. The same algorithm can
also be applied to ordinal attributes. In an experimental section, we show that the use
of our new pruning scheme results in a huge performance gain when more that just a
few split-points are considered for the numerical attributes.

Keywords Pattern mining · Subgroup discovery · Performance · Pruning

1 Introduction

Subgroup discovery (Klösgen 1996; Wrobel 1997) is a Knowledge Discovery task
that aims at finding descriptions of subgroups of a population with high generality
and distributional unusualness with respect to the target attribute. It belongs to the

Responsible editors: Aleksander Kołcz, Wray Buntine, Marko Grobelnik, Dunja Mladenic,
and John Shawe-Taylor.

H. Grosskreutz (B) · S. Rüping
Fraunhofer IAIS, Schloss Birlinghoven, Sankt Augustin, Germany
e-mail: henrik.grosskreutz@iais.fraunhofer.de

S. Rüping
e-mail: stefan.rueping@iais.fraunhofer.de

123



On subgroup discovery in numerical domains 211

group of local pattern mining tasks, like frequent item mining and association mining,
but differs from these tasks, among others, by its different quality function. Subgroup
discovery is a general approach that has shown to be useful in a variety of application
scenarios: Recently, it has been applied in an outstanding Data Mining case study in
Dementia Research (Hapfelmeier et al. 2008); other applications scenarios include
spatial analysis (Klösgen and May 2002) and marketing campaign planning (Lavrac
and Gamberger 2004).

Most subgroup discovery algorithms presented so far (Atzmueller and Puppe 2005;
Demsar et al. 2004; Atzmüller and Puppe 2006; Grosskreutz et al. 2008; Klösgen 1996)
primarily consider the case where the dataset only involves attributes with nominal
(non-target) attributes. In this setting, a subgroup is typically described by a conjunc-
tion of attribute-value pairs. Those pairs are sometimes also called features (Lavrac and
Gamberger 2004). For example, in a dataset describing the characteristics and the price
of cars, the search for subgroups with a significantly higher price than average would
come up with descriptions involving features like fuel-type=gas or aspiration=turbo.

In many real-world domains, however, the data involves attributes that are not nom-
inal but numeric. For example, the gas consumption of a car is a numeric attribute, and
so are (in a medical setting) the age of a patient or her blood pressure. Here, the fea-
tures in the subgroup descriptions should involve either inequalities or intervals, like
for example blood_pressure ∈ ]80, 120] or age ∈ ]18, 23]. The standard approach to
deal with numerical attributes is to make use of a prior discretization step, to replace
every numerical by a single nominal attribute. The effect of this approach is, however,
that the subsequent subgroup discovery will typically only find suboptimal subgroup
descriptions as only a subset of all valid features are preserved. While some authors
(Lavrac et al. 2004; Kralj et al. 2005) consider the transformation of every numerical
attribute into a set of features to avoid this limitation, to the best of our knowledge
no specialized algorithm has been proposed that takes advantage of the constraints
among features created from numerical attributes in such a way.

In this paper, we describe a new pruning scheme which exploits the constraints
among the quality of subgroups ranging over overlapping intervals and present a new
subgroup discovery algorithm, MergeSD. We show empirically that on several real-
world datasets MergeSD achieves a huge performance gain compared to previous
algorithms when the number of candidate interval endpoints is large. While in this
paper we focus on numerical attributes, our approach is also applicable to ordinal
attributes.

The remainder of this paper is organized as follows: In Sect. 2, we define the sub-
group discovery task. In Sect. 3, we consider previous approaches and their limitations.
Thereafter, we present our new pruning scheme in Sect. 4. We present the experiments
in Sect. 5 before we conclude in Sect. 6.

2 Preliminaries

A database or dataset DB is a set of rows {R1, . . . , RN }, each built up from of l + 1
values. We distinguish one attribute C , called the class attribute, from the l ordinary
attributes {A1, A2, . . . , Al}. Throughout this paper, we assume that the class attribute
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C is two-valued, with possible values pos and neg. The other attributes can either be
nominal, with domains D(Ai ) = {vi,1, . . . , vi,mi }, or numerical; in the latter case, we
assume D(Ai ) = R. For a database row R j we use the expression class(R j ) to refer
to its class. Rows with class pos will be called positive examples, the others will be
called negative examples.

A subgroup description sd is a set of features (Lavrac and Gamberger 2004)
{ f1, . . . , fk} where every feature fi is a constraint on an attribute. That is, for nominal
attributes a feature fi has the form (Ai = vi ), vi ∈ D(Ai ) and for numerical features
it has the form Ai ∈ ] tl , tr ], where tl ∈ R ∪ { −∞} and tr ∈ R ∪ {∞}. We use the
convention that every (finite) interval endpoint ti has to occur in the dataset (to avoid
running into an infinite number of equivalent split points). The length of the subgroup
description, length(sd), is the number of features it is built of. We call a subgroup
description sd ′ a refinement of a subgroup description sd, denoted by sd ′ � sd, if sd
is a subset of sd ′. In the following, we will sometimes use the term subgroup as an
abbreviation for subgroup description.

Given a database DB and a subgroup description sd, DB[sd] denotes the set of
rows R j ∈ DB that satisfy all feature fi ∈ sd. For a nominal attribute Ai , the row
R j = (v j,1, . . . , v j,l , c j ) satisfies Ai = vi iff. v j,i = vi ; for a numerical attribute Ai ,
R j satisfies Ai ∈ ] tl , tr ] iff. v j,i ∈ ] tl , tr ].

The interestingness of a subgroup description sd (on a dataset DB) is measured
by a so-called quality function. A quality function q is a mapping from a database
and a subgroup description to the reals; the higher the quality, the more interesting the
subgroup description is. In this paper, we consider quality functions of the form:

ga · (p − p0) (1)

where a is a constant s.t. 0 ≤ a ≤ 1, g denotes the generality of the subgroup
and p resp. p0 the fraction of rows of positive class in the subgroup respectively in
DB. Formally, g := |DB[sd]|/|DB|, while p := |{r ∈ DB[sd] |class(r)=pos}|

|DB[sd]| , and p0 :=
|{r ∈ DB| class(r)=pos}|

|DB| . In the experimental section we focus on the case where a = 1,
which is known as the Piatetsky-Shapiro quality function (Klösgen 1996), is order
equivalent to the weighted relative accuracy WRACC (Lavrac et al. 2004), and is
probably the most popular subgroup quality function. However, our pruning approach
works for all a s.t. 0 ≤ a ≤ 1.

We are now ready to formulate the task of subgroup discovery. Given a database
DB, a maximum length d and a number k, find a set S of subgroup descriptions such
that every sd ∈ S has length ≤ d, the cardinality of S is k and the quality of the solution
S is maximal. Thereby, the quality of a set of subgroups, S, is defined as the average
quality of the subgroups in S.

An optimistic estimate (Wrobel 1997) is a function that, given a subgroup descrip-
tion sd, provides a bound on the quality of all refinements of sd. Formally, the function
oe is an optimistic estimate for the quality function q if

∀ subgroups sd, sd ′. sd ′ � sd �⇒ oe(sd) ≥ q(sd ′).
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Optimistic estimates allow to significantly speedup the task of (exhaustive) subgroup
discovery: if one has already found k subgroups and the least quality of those sub-
groups is minQ, then it is safe to prune the sub-space of refinements of a subgroup
with optimistic estimate below minQ. For the Piatetsky-Shapiro quality function, the
following is a tight optimistic estimate (Grosskreutz et al. 2008): g · p · (1 − p0).

3 Prior work

In this section, we review how existing subgroup discovery systems deal with numer-
ical attributes and discuss the limitations of these approaches.

3.1 Subgroup discovery implementations

Most subgroup discovery algorithms, like CN2-SD (Lavrac et al. 2002), SD-Map
(Atzmüller and Puppe 2006) and DpSubgroup (Grosskreutz et al. 2008), only con-
sider subgroup descriptions involving nominal attributes. Thus, the standard approach
of data mining systems based on these algorithms, like Vikamine (Atzmueller and
Puppe 2005) or Orange (Demsar et al. 2004), is to discretize all numerical attributes
beforehand. Typically, this is done by means of entropy discretization (Fayyad and
Irani 1993).

The result is that, for every numerical attribute, an ordered set of split points
t1, . . . , tn is calculated and that the numerical attribute is replaced by a new nomi-
nal attribute with domain {]−∞, t1], ]t1, t2], ]t2, t3],…, ]tn,∞]}. The result of this
procedure is, roughly speaking, that only subgroup descriptions ranging over non-over-
lapping base intervals are considered. Intervals like ]t1, t3] that overlap with ]t1, t2]
and ]t2, t3] are ignored.

To overcome this restriction, some authors do not simply replace a numerical attri-
bute by a single nominal attribute but instead use a binarization scheme where every
possible attribute-value inequality or every possible attribute-interval pair is turned
into a boolean feature (Kralj et al. 2005; Lavrac and Gamberger 2004). While in prin-
ciple this allows to find the optimal solution to the subgroup discovery task, in practice
it results in a major increase in the search space which can be problematic. As a result,
these approaches have to make use of some incomplete search heuristic like beam
search. Kralj et al. (2005) gives an interesting comparison of the effect of different
discretization methods on the performance of subgroup discovery algorithms. In par-
ticular, they consider both entropy discretization and exhaustive feature construction.
However, as they consider a beam search approach the results are more about the inter-
play of different discretization strategies and beam search and not so much about the
restrictions imposed by a strategy like entropy discretization on the remaining space
of subgroup descriptions. Moreover, neither they nor other authors propose a special-
ized algorithm which takes advantage of the characteristics of numerical attributes to
speedup the subgroup discovery. However, there is potential for doing so, as we will
describe in Sect. 4.
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3.2 Problems with entropy discretization

We will now present some examples that illustrate the impact of the different discret-
ization strategies.

3.2.1 Non-overlapping intervals

Figure 1a shows a dataset involving two attributes, plotted on the x and y-axis. Positive
examples are visualized by cross, while negative examples are visualized by a point.
While this example is hand-crafted and completely idealized, it is nevertheless very
fitting to understand the problems that occur when dealing with numerical attributes.
It should be obvious that there are two subgroups in this dataset: the instances at the
lower left and the instances at the upper right. That is, we expect to obtain the following
two subgroup descriptions:

Y ∈ ] −∞, 2] ∧ X ∈ ] −∞, 4] and Y ∈ ]4,∞] ∧ X ∈ ]2,∞]

However, entropy discretization and subsequent subgroup discovery on the resulting
nominal attributes does not find these subgroups. Instead, the best subgroups found are:

X ∈ ]2, 4]
Y ∈ ]−∞, 2]
Y ∈ ]4,∞]
Y ∈ ]−∞, 2] and X ∈ ]−∞, 2]

Those subgroups are not the expected result, and indeed they have a strictly lower
quality than the optimal subgroups. The reason for the sub-optimal result here is the
following: Entropy discretization finds a set of split points for the two numerical
attributes and these split points are used to replace the numerical attribute by a nomi-
nal attribute with values ranging over non-overlapping base intervals. In this example,
only the non-overlapping intervals ] −∞, 2], ]2, 4], ]4,∞] are considered for attribute

Fig. 1 Examples (a) Non-overlapping intervals fail to find the optimal solution (b) Entropy discretization
does not find any split point for attribute x
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x , and similarly for attribute y. Thus, subgroup discovery only considers conditions
where the value of x lies within one of those base intervals.

3.2.2 Overlapping intervals

The obvious solution to the problem illustrated in the previous section seems to be to
consider every ordered pair of the split points t1, . . . , tn as candidate interval, not just
the base intervals. This is essentially equivalent to the approach proposed (Kralj et al.
2005), where every numerical attribute is transformed into a set of features.

However, there are two caveats. First, this approach results in O(n2) overlapping
candidate intervals, and thus it will become necessary to consider O(n2) features
for the attribute, instead of only O(n) features. Second, it is easy to construct other
examples where new problems arise when overlapping intervals based on entropy
discretization are used. For example, consider the population illustrated in Fig. 1b.

Obviously, the expected result is the following subgroup description:

Y ∈ ]−∞, 2] ∧ X ∈ ] −∞, 4]

However, entropy discretization fails in partitioning the x dimension. The reason is that
entropy discretization performs univariate analysis to determine the splitting points.
That is, it will use the projection of the data on the x dimension and on this projec-
tion, the proportion of positive and negative examples is uniformly distributed. Hence,
entropy discretization will simply consider the attribute x as irrelevant. As a result,
the best subgroup would be:

Y ∈ ] −∞, 2]

We remark that it is possible to construct high-dimensional datasets where the
projection on every dimension results in uniformly distributed positive and negative
examples.

3.3 Other related work

One important issue to address is the retrieval of good sets of subgroups. In subgroup
discovery applications one is often interested in finding a relatively small set of sub-
groups with a moderate overlap, not in finding all patterns above a certain threshold.
In particular, it would not be desirable to obtain a set of subgroup descriptions which
only differ minimally in their interval endpoints. A standard approach to deal with
this kind of difficulties is the weighted covering approach proposed in Lavrac et al.
(2002). Essentially, this is an iterative scheme which searches for the top-1 subgroup,
adapts the weight of the positive examples covered by that subgroup, and goes into
the next iteration.

Finally, we remark that while it might seem that the task we consider is very similar
to impact rule mining (Webb 2001), the difference is that there it is the target attri-
bute which is numeric. Our task is also related to quantitative association rule mining
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(Srikant and Agrawal 1996). Like us, they consider both base intervals and combine
them to obtain super-intervals. However, their approach is based on itemsets instead
of subgroups. Hence, they consider a different quality function and moreover use a
maximum support parameter.

4 A pruning scheme for numerical attributes

In the previous section, we have motivated why subgroup discovery algorithms for
numerical attributes should consider overlapping intervals. Regardless of the strategy
that is used to determine the intervals respectively the split points for the attributes (an
issue we will discuss in Sect. 4.4), it is desirable to prune as large a part of the search
space as possible. Of course, optimistic estimate pruning can be used for that purpose.
However, it is possible to prune a much larger part of the search space by exploiting
constraints among the quality of subgroups ranging over overlapping intervals of the
same attribute.

In this section, we will describe the algorithm MergeSD that makes use of a new
pruning scheme. Basically, MergeSD performs a depth-first-search in the space of
subgroup descriptions. In each recursion step, MergeSD checks all combinations of
endpoints unless proof in the form of an upper bound exists that the subgroup refine-
ments will not exceed the quality threshold. The pruning approach is based on the
following ideas:

(1) It is possible to calculate a bound on the quality of all subgroup refinements
of sd ′ ∧ A ∈ ]tl , tr ] from the maximal quality of all subgroups refinements of
sd ′ ∧ A ∈ ]tl , t ′] and sd ′ ∧ A ∈ ]t ′, tr ] (for an arbitrary t ′ s.t. tl ≤ t ′ ≤ tr ),

(2) Typically, there are many splitpoints t ′ between tl and tr . Thus, there are multiple
possibilities to apply the above and thus one can obtain multiple bounds for the
refinements of sd ′ ∧ A ∈ ]tl , tr ]. To keep track of all those bounds, respectively
of their minimum, we make use of a specialized data structure, the BoundTables.

We will now discuss these steps in more detail in the remainder of this section.

4.1 Quality constraints

Let DB be a database, k a depth level, P a set of split points and sd a subgroup
description of length < k involving only intervals with endpoints in P . Then:

max Q(DB, k, sd, P) := max
sd∗ ∈ refinements(sd,DB,k,P)

{q(DB, sd∗)}

Here, refinements(sd, DB, k, P) denotes the set of refinements of sd with length ≤ k
and interval endpoints in P . Using this definition, we are now ready to formulate the
property that will be the basis for our algorithm MergeSD:

Lemma 1 Let DB be a database, P a set of split points, tl and tr two split points from
P such that tl < tr and A a numerical attribute from DB. Furthermore, let sd ′ and sd
be two subgroup descriptions (of length ≤ k, involving only interval endpoints from P
and attributes from DB) such that sd is a refinement of sd ′∧ A ∈ ]tl , tr ]. Then for every
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t ′ such that tl ≤ t ′ ≤ tr , the quality of sd on DB is bound by max Q(DB, k, sd ′ ∧
A ∈ ]tl , t ′], P) + max Q(DB, k, sd ′ ∧ A ∈ ]t ′, tr ], P).

Proof Let sd∗ be a maximum quality subgroup from refinements(sd ′∧A ∈ ]tl , tr ], DB,

k, P). Then, by construction q(DB, sd) ≤ q(DB, sd∗). Furthermore, let sd∗
l be the

subgroup description obtained from sd∗ by replacing the condition A ∈ ]tl , tr ] by
A ∈ ]tl , t ′]. Similarly, let sd∗

r be the description obtained by replacing the former
expression by A ∈ ]t ′, tr ]. If we show that the quality of sd∗ is bound by the sum of
the qualities of sd∗

l and sd∗
r , then we can deduce

q(DB, sd∗) ≤ q(DB, sd∗
l ) + q(DB, sd∗

r )

≤ max Q(DB, k, sd ′ ∧ A ∈ ]tl , t ′], P)

+ max Q(DB, k, sd ′ ∧ A ∈ ]t ′, tr ], P)

because sd∗
l and sd∗

r are elements of refinements(sd ′ ∧ A∈ ]tl , t ′], DB, k, P) resp.
refinements(sd ′ ∧ A ∈ ]t ′, tr ], DB, k, P), and we are done.

We will now complete the proof by showing the inequality q(DB, sd∗) ≤ q(DB,

sd∗
l ) + q(DB, sd∗

r ). Let nl and pl be negative resp. the positive example in DB[sd∗]
which satisfy A ∈ ]tl , t ′] and similarly nr and pr those that satisfy A ∈ ]t ′, tr ]. Then
for 0 ≤ a ≤ 1:

q(DB, sd∗) · |DB|
= (pl + pr + nl + nr )

a
(

pl + pr

pl + pr + nl + nr
− p0

)

= (pl + pr + nl + nr )
a−1(pl + pr − p0(pl + pr + nl + nr ))

= (pl + pr + nl + nr )
a−1(pl − p0(pl + nl))

+(pl + pr + nl + nr )
a−1(pr − p0(pr + nr ))

≤ (pl + nl)
a−1(pl − p0(pl + nl))

+(pr + nr )
a−1(pr − p0(pr + nr ))

= (q(DB, sd∗
l ) + q(DB, sd∗

r )) · |DB|

which completes the proof. 
�

4.2 Keeping track of all quality bounds

To keep track of all bounds that can be deduced from sub-intervals using Lemma 1,
and to make maximum use of them, we define a special data structure, which we call
BoundTables. A BoundTables is a (2-dimensional) table, where BoundTables[i, j]
contains the bound on the quality of A ∈ ]ti , t j ]. There is one BoundTables for every
attribute A. Initially, the value of BoundTables[i, j] is 0 if i = j and ∞ else. (Only
elements where i ≤ j are relevant.)

Typically during the exploration of the search space one considers more than one
split point for every (numerical) attribute. When a new bound max Q for the refine-
ments of A ∈ ]ti , t j ] becomes available, it becomes potentially possible to update the
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bounds for all super-interval of A ∈ ]ti , t j ], i.e. for all A ∈ ]t ′i , t ′j ] such that i ′ ≤ i and
j ′ ≥ j . Hence, whenever a new bound max Q on the quality of subgroups involving
A ∈ ]ti , t j ] becomes available,

– the value BoundTables[i, j] is set to max Q; and
– for all i ′ ≤ i and j ′ ≥ j , BoundTables[i ′, j ′] is updated to BoundTables[i ′, i] +

max Q + BoundTables[ j, j ′].
The correctness of the second update follows directly from the fact that ]t ′i , t ′j ] is the
disjunct union of ]t ′i , ti ], ]ti , t j ] and ]t j , t ′j ] and Lemma 1.

4.3 Depth-first search in the space of subgroup descriptions

Based on the data structure BoundTables, our algorithm recursively explores the space
of candidate subgroup descriptions, essentially by performing a depth first search.
The use of a breadth-first-search strategy is not possible because our pruning scheme
assumes that the complete branch of the search space below an interval is exhaus-
tively explored before the bounds for the super-intervals can be updated. We remark,
however, that breadth-first-search is problematic anyway due to its higher memory
footprint.

During the depth first search, at every node our algorithm explores the child (i.e.
the branch of refinements) with highest bound first. If all intervals that have not yet
been explored have a bound below the minimum required quality, minQ, the loop
ends. Else, the attribute and interval with the highest bound are determined using the
BoundTabless. As a heuristic, we ensure that the next interval will never range over
base intervals that have not been checked.1 Once the recursive calculation for the
branch below the selected attribute/interval ends, the corresponding BoundTables is
updated. Moreover, if k subgroups have already been collected, the minimum quality
minQ is updated to the quality of the k-th subgroup. Thereafter, the next run of the
loop starts.

As a simple but effective optimization, our algorithm tests all direct refinements (i.e.
all refinements resulting from the addition of a single feature) first before switching to
recursive exploration. This approach allows to have a better estimate of minQ before
the expensive recursive explorations start. We use a separate set of BoundTabless to
prune as large a number of direct refinements as possible. Please note that it is nec-
essary to use separate sets of BoundTabless because they store bounds for subgroup
descriptions of different length.

Another important optimization is motivated by the observation that it is possible
to derive bounds for super-intervals not only using the exact maximum quality for
the refinements of sub-intervals, but also using optimistic estimates for sub-intervals.
For example, it is possible to establish a bound for ]t ′i , t ′j ] using the exact maximum
quality calculated for the branch below ]ti , t j ] and the optimistic estimates for ]t ′i , ti ]

1 The rationale for this heuristic is roughly the following: the information about the quality of subgroup
descriptions ranging over a base interval allows to update the bounds for many super-intervals, while the
knowledge about the quality of subgroup descriptions ranging over a larger interval does not provide that
much potential for updates of super-interval bounds.
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Algorithm 1 The algorithm MergeSD
MergeSD(Database DB, int k, depth limit d):
1: Initialize priority queue result with maximal length ≤k
2: call recurse(DB, ∅, d, −∞, result)

return result
Function recurse(DB, sg, d, minQ, result):
1: Initialize local variable bestQBelow with quality of sg
2: for all remaining attributes a do
3: Initialize BoundTables Ba

direct for direct refinements of sg involving constraint on a
4: Initialize BoundTables Ba

rec for recursion-depth refinements
5: end for
6: while ∃ interval with estimate ≥ minQ according to the Ba

direct tables do
7: determine next refinement sg* := sg ∧ a ∈ ]tl , tr ]
8: calculate quality of sg* and add sg* to result if its quality is ≥ minQ
9: set bestQBelow to maximum of bestQBelow and quality of sg*
10: update Ba

direct using quality of sg*
11: update Ba

rec using optimistic estimate for sg*
12: increase minQ if result contains k subgroups with quality > minQ
13: end while
14: if length of sg is < (d - 1) then
15: while ∃ interval with estimate ≥ minQ according to the Ba

rec tables do
16: determine next refinement sg*:= sg ∧ a ∈ ]tl , tr ]
17: call recurse(DB, sg*, d, minQ,result) and store result in local var bestQBelowSg∗
18: set bestQBelow to maximum of bestQBelow and bestQBelowSg∗
19: update Ba

rec using bestQBelowSg∗
20: increase minQ if result contains k subgroups with quality > minQ
21: end while
22: end if
23: return bestQBelow

and ]t j , t ′j ]. Thus, whenever we calculate the quality of a direct refinement, we also
calculate its optimistic estimate and use it to update the corresponding BoundTables.

We give pseudo-code for MergeSD in Algorithm 1. The computation is essentially
done by the function recurse. Lines 6–13 of recurse deal with the direct refinements:
The next subgroup is determined and considered, and minQ and the BoundTabless are
updated as described earlier. Lines 14–22 perform the recursive calls, updating the
BoundTabless and minQ when possible. Finally, the value of the best subgroup con-
sidered below this branch, bestQBelow, is returned to allow the caller of recurse to
update its own BoundTables.

4.3.1 Mixed attributes

One remark on subgroup descriptions involving both numerical and nominal attri-
butes: For the sake of simplicity, here we only considered numerical attributes. How-
ever, it is relatively simple to extend the algorithm to deal with both numerical and
nominal attributes. One possibility is to explore the search space by first considering
nominal attributes (using standard techniques) and then to switch to the numerical
attributes.
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4.4 Split points and candidate intervals

So far, we did not discuss how the split points for an attribute are calculated. There is a
wide range of possible approaches to do so (Dougherty et al. 1995). In this paper, we
consider three different approaches: the approach of Fayyad and Irani (1993) based
on entropy minimization coupled with the minimal description length principle; equal
frequency intervals (Dougherty et al. 1995) and exhaustive search where every value
in the data set is considered as a split point.

4.4.1 Optimizations

For the evaluation described in Sect. 5, where we search for the top-1 subgroup, we
used two optimizations to somewhat reduce the set of candidate intervals considered
by equal frequency discretization and exhaustive search. First, we only consider a
value as candidate split point if it separates two adjacent examples having different
class. Second, we do not consider an interval if there is a narrower candidate interval
which covers the same set of positive examples. We remark that in general, i.e. in
top-k discovery with k > 1, these optimzations can have the effect that a subgroup
description is not returned although it has a sufficiently high quality. However, it is
easy to verify that the best subgroup found will still have maximal quality, i.e. top-1
subgroup discovery is not affected. This case is of particular importance because, as
explained in Sect. 3.3, in practice top-1 subgroup discovery is often combined with an
iterative weighted covering approach (Lavrac et al. 2002).

5 Evaluation

In this section, we present results concerning the performance of MergeSD, the impact
of pruning and the quality of the subgroups found using different discretization strat-
egies. We ran experiments on eight datasets, listed in Fig. 2 along with their most
important properties. The dataset ‘mail order fraud’ is a real-world dataset from a
project where we were seeking for descriptions of subgroups with a high fraud rate in
mail order data. The other datasets are benchmark datasets from the well-known UCI
Machine Learning Repository (Asuncion and Newman 2007). All Experiments were
run on an Intel Core 2 Duo T7500 with 2 GB of RAM under Windows XP, using the
Piatetsky-Shapiro quality function.

5.1 Quality

Figure 3 shows the quality of the best subgroup, i.e. the top-1 subgroup found on
two datasets using different strategies. While the x-axis shows the limit on the length
of the subgroup description, the y-axis shows the quality of the best subgroup. The
figure shows the result for different strategies: non-overlapping frequency discretiza-
tion with five splits (‘n/o freq.’), non-overlapping entropy discretization (‘n/o entr.’),
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Fig. 2 Datasets

Fig. 3 Quality comparisons (a) ‘diabetes’ (b) ‘yeast’

overlapping frequency discretization with ten splits (‘o/l freq’), overlapping entropy
discretization (‘o/l entr.’) and exhaustive search (‘exhaustive’).

For the diabetes dataset, the figure shows that the use of non-overlapping intervals
result in clearly lower quality subgroups compared to overlapping intervals: Using fre-
quency discretization, the quality is only about 50% of the maximum; using entropy
discretization about 68%. Interestingly, for the yeast dataset the result obtained using
entropy discretization and overlapping intervals coincides with that using non-overlap-
ping intervals. As expected from the discussion in Sect. 3.2, minimal-entropy discret-
ization is sometimes inferior to frequency discretization: while in ‘diabetes’ entropy
discretization is marginally on the lead, in ‘yeast’ frequency discretization is clearly
better.

In both examples, none of the discretization methods was able to find the optimal
solution (i.e. the solution obtained by exhaustive search). We show whether the dis-
cretization strategies resulted in the discovery of the optimal solution for the other
datasets in Fig. 4. A ‘+’ means that entropy discretization respectively frequency dis-
cretization found the optimal solution for a specific depth limit and dataset. The result
is that although entropy discretization comes up with the optimal solution in some
cases, in most cases it fails to do so. In some of those cases, frequency discretization
allows to find the optimal solution, but there are many cases where neither approach

123



222 H. Grosskreutz, S. Rüping

Fig. 4 Optimality of top-1 subgroup for different discretization strategies and depth limits

is able to come up with the optimal solution (Please note that some values are missing
because exhaustive search did not complete within 48 h).

5.2 Performance

We compared MergeSD with the Algorithm DpSubgroup (Grosskreutz et al. 2008),
a subgroup discovery algorithm that makes use of pruning based on tight optimistic
estimates. On datasets involving only nominal attributes DpSubgroup is arguably the
best algorithm currently available when it comes to pruning the search space [Presum-
ably, it is also one of the fastest subgroup discovery implementations as it also makes
use of the FpTree-based data representations introduced by SD-Map (Atzmüller and
Puppe 2006)]. We made some minor modifications to make DpSubgroup applicable
to numerical domains: first, the numeric attributes are discretized by calculating a
set of split points and using one binary feature for every ordered pair of split points.
Second, we ensured that DpSubgroup never considers subgroup descriptions involv-
ing more than one feature per numeric attribute (to avoid considering subgroups like
A ∈ ]2, 5] ∧ A ∈ ]2, 4]).

Figure 5 shows the effect of the new pruning scheme on the number of subgroup
descriptions considered when frequency discretization with ten split points is used.
On the x axis, we show different depth limits, while the y axis shows the number of

Fig. 5 Number of considered subgroups if frequency discretization is used (a) ‘diabetes’ (b) ‘transfusion’
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nodes explored by the two algorithms, as well as the total number of nodes (which
had to be searched if no pruning was applied). The diagram shows that the pruning
based on the BoundTables allows to prune a much higher fraction of the candidate
subgroups (Please note that we used a logarithmic scale in this figure). Moreover, it is
interesting to observe that while the optimistic estimate pruning used in DpSubgroup
only has an impact on depth level 2 or higher (because optimistic estimate pruning
only allows to prune refinements), MergeSD also allows to prune a large fraction of
the subgroups at depth level 1.

Next, we considered the impact of our new pruning scheme when the subgroups are
searched exhaustively. Figure 6 shows the number of candidate subgroup descriptions
considered by MergeSD and DpSubgroup on the ’transfusion’ and the ’mammog-
raphy’ datasets. The figure shows that the use of the new pruning scheme reduces the
number of considered subgroup descriptions by orders of magnitude. The impact of the
new pruning scheme on the runtime is roughly similar. Figure 7 shows the runtimes of
DpSubgroup and MergeSD on four different datasets when frequency discretization
is used. The difference is tremendous; please note that again we used a logarithmic
scale.

Figure 8 summarizes the speedups achieved by the new algorithm when frequency
discretization respectively exhaustive search is used (the figures show the fraction of
the runtime of MergeSD compared to DpSubgroup). Thereby, we only considered
depth level 2 because DpSubgroup failed to calculate the results on larger depth
limits; even with depth limit 2, DpSubgroup failed to complete the exhaustive calcu-
lation (for memory or time reasons) on several datasets. On all datasets, the speedup
is considerable and often reaches several orders of magnitude.

While MergeSD outperforms DpSubgroup when frequency discretization is used
(and even more so if exhaustive search is used), the situation changes when entropy
discretization is used. In this case, the performance of MergeSD and the modified
DpSubgroup are comparable. The reason is that in most datasets from Fig. 2 entropy
discretization produces a very small set of split points (the average number of split
points per attribute varied from 1.7 to 3.2 for the different datasets).

Fig. 6 Number of considered subgroups if an exhaustive set of split points are used (a) ‘mammography’
(b) ‘transfusion’
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Fig. 7 Frequency discretization: runtimes (a) ‘diabetes’ (b) ‘mail order fraud’ (c) ‘spambase’ (d) ‘yeast’

Fig. 8 Speedup of MergeSD vs. DpSubgroup

6 Summary and discussion

In this paper, we have investigated subgroup discovery on datasets with numerical
attributes. We have explained why the standard approach to replace every numeri-
cal attribute by a nominal attribute (using entropy discretization and non-overlapping
intervals) typically results in suboptimal results. We have also motivated why the use
of entropy discretization and overlapping intervals is not optimal either.

As main contribution, we have presented a new pruning scheme that makes use
of quality constraints among the quality of subgroups which range over overlapping
intervals of the same attribute. We have presented a data structure that keeps track of
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all bounds that can be deduced from the quality of the subgroups explored so far and
have described an algorithm that makes use of these bounds to prune a large part of
the search space.

We have made use of our new pruning scheme to calculate the relative quality
of the results produced by different subgroup discovery strategies. In particular, we
have considered frequency and entropy discretization, combined with both overlap-
ping and non-overlapping intervals, as well as exhaustive search. The result is that
overlapping intervals derived by means of entropy discretization often produce quite
good subgroup descriptions. However, in most experiments the result is not optimal.
Our conclusion is that the use of entropy discretization and overlapping intervals is a
good starting point, but that it is suggestive to additionally perform a frequency discret-
ization (or an exhaustive search). When frequency discretization or exhaustive search
is used, or when entropy discretization comes up with a large number of split points,
the new pruning scheme presented in this paper allows to tremendously speedup the
computation.

A nearby extension would be to consider more heuristics for the computation of
split points. For example, one could make use of a local entropy discretization, where
the split points are not globally computed before the subgroup discovery starts but
locally, that is inside the recursive computation. In fact, we tested this strategy on all
datasets in Fig. 2 but it never resulted in an optimal result where the global entropy
discretization did not. This observation fits with the investigations in Dougherty et al.
(1995) on global versus local entropy discretization.
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